skip to main content


Title: Problematizing Perceptions of STEM Potential: Differences by Cognitive Disability Status in High School and Postsecondary Educational Outcomes
The STEM (science, technology, engineering, and mathematics) potential of youth with cognitive disabilities is often dismissed through problematic perceptions of STEM ability as natural and of youth with cognitive disabilities as unable. National data on more than 15,000 adolescents from the High School Longitudinal Study of 2009 first suggest that, among youth with disabilities, youth with medicated attention-deficit/hyperactivity disorder (ADHD) have the highest levels of STEM achievement, and youth with learning or intellectual disabilities typically have the lowest. Undergraduates with medicated ADHD or autism appear to be more likely to major in STEM than youth without cognitive disabilities, and youth with autism have the most positive STEM attitudes. Finally, results suggest that high school STEM achievement is more salient for college enrollment than STEM-positive attitudes across youth with most disability types, whereas attitudes are more salient than achievement for choosing a STEM major.  more » « less
Award ID(s):
1652279
NSF-PAR ID:
10314269
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Socius: Sociological Research for a Dynamic World
Volume:
7
ISSN:
2378-0231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. 
    more » « less
  2. The literature linking adulthood criminality to cumulative disadvantage and early school misbehavior demonstrates that understanding the mechanisms underlying student behavior and the responses of teachers and administrators is crucial in comprehending racial/ethnic disparities in actual or perceived school misbehavior. We use data on 19,160 ninth graders from the nationally representative High School Longitudinal Study of 2009 to show that boys’ and girls’ negative achievement and negative experiences with teachers relate more closely to school misbehavior than the contextual measures (e.g., negative peer climate, proportion Black) that have often been emphasized as most salient for misbehavior. Differences in negative achievement and experiences completely explain Black boys’, Latinx boys’, and Black girls’ heightened levels of school misbehavior relative to White youth, and Asian boys’ and girls’ lower levels of school misbehavior. In contrast, differences in negative achievement and experiences only partially explain Latinx girls’ higher levels of school misbehavior relative to White girls.

     
    more » « less
  3. null (Ed.)
    Engineering Projects in Community Service (EPICS) is a middle and high school program, with a focus on the engineering design process and delivering real solutions to community partners. In order to evaluate the efficacy of the program, a pre-post test design was implemented to examine changes in attitudinal and behavioral measures. Pre-data were collected at the beginning of the school year, and paralleled the program’s registration process to ensure high response rates; post- data were then collected at the end of the school year. Demographic data demonstrate that of all 2018 - 2019 registered EPICS participants (N = 414), 41 percent were female; 66.6 percent were non-white; and 30 percent held first generation student status. Importantly, 68.5 percent of participants reported that neither parent or guardian is an engineer, and 65.7 percent of participants reported that they “definitely will attend” a four-year university. These data suggest that the current sample is ideal for evaluating EPICS as a pre-college engineering education program, because most participants are not experiencing engineering in the home and may be less susceptible to parental pressures for choosing engineering as a college major and potential career, but have salient intentions to attend college. In addition to collecting demographic information, participants completed a series of measures designed to capture attitudes and behaviors toward engineering as a potential career field. The main measures of interest include Engineering Identity and Doing Engineering. Engineering Identity scores reflect participants’ personal and professional identities as engineers; Doing Engineering scores indicate participants’ prior experience with engineering and its related technical skills. Baseline data on the sample reveal average engineering identities (M = 38.41, SD = 6.44, 95% CI [37.77, 39.05]). A series of t-tests was conducted to examine gender differences in these measures. Men reported significantly higher engineering identities (M = 37.65, SD = 6.58) compared to women (M = 39.54, SD = 6.09), t(360) = 2.95, p = .003, F = .037. Men reported stronger and more frequent experiences with engineering, indicated by their higher Doing Engineering scores (M = 13.75, SD = 5.16), compared to women (M = 15.31, SD = 4.69), t(368) = 3.13, p = .002, F = .003. Interestingly, first generation students reported higher engineering identities (M = 37.45, SD = 6.53) compared to non-first generation students (M = 39.66, SD = 5.99), t(375) = 3.46, p = .001, F = 1.39. To examine the relationship between Engineering Identity and Doing Engineering, a correlation analysis was conducted and a moderate, positive relationship emerged, such that as students’ experience with engineering increased, their engineering identities also increased (R = .463, p > .000). 
    more » « less
  4. null (Ed.)
    The purpose the present study is to explore African American undergraduate students' perceptions of their experiences and academic motivation within a Historically Black College or University (HBCU) learning environment. As part of a larger study, we collected 212 open-ended survey responses from first year students in STEM majors about how the HBCU context shapes their academic motivation. We used semantic thematic data analysis and found three major themes and corresponding sub themes that were salient in the development of students' academic motivation: place (institutional climate, HBCU mission and tradition, and absence of marginalization); pedagogy (culturally relevant pedagogy, positive faculty-student relationships, African American curriculum and instruction, racial socialization); and people (people “like me”; student, faculty and alumni models of high achieving African Americans). We discovered that HBCU institutional factors engendered academic motivation that is rooted in students' racial identity and suggest the construct of racial identity-rooted academic motivation. Given the important and unique realities of African American students that impact their educational experiences, engagement, identity development, and achievement in various types of school contexts, self and sociocultural variables must be included in research and theory on the motivational psychology of African American students. Implications for higher education practice and future research are discussed. 
    more » « less
  5. Abstract Purpose of the study Previous literature has examined the relationship between high school students’ postsecondary STEM major choices and their prior interest and perceived ability in mathematics. Yet, we have limited understanding of whether and how perceived ability and interest in science and mathematics jointly affect students’ STEM major choices. Results Using the most recent nationally representative longitudinal cohort of U.S. secondary school students, we examine the degree to which students’ perceived mathematical and scientific abilities and interests predict their STEM major choices, employing logistic regression and a series of interaction analyses. We find that while both mathematics and science perceived ability positively influence STEM major selection, academic interest in these subjects is a weaker predictor. Moreover, across a series of analyses, we observe a significant gender gap—whereby women are less than half as likely to select STEM majors—as well as nuanced distinctions by self-identified race. The relationships among perceived ability, interest, and STEM major choice are not found to meaningfully vary by race nor consistently by gender. However, perceived ability has a more positive effect for men than women who are pursuing Computing/Engineering majors and a more positive effect for women than men who are pursuing other STEM majors, including less applied Social/Behavioral, Natural, and Other Sciences. Implications These findings suggest potential opportunities to enhance their perceived mathematical and scientific abilities in high school, positioning them to potentially enter STEM fields. School sites with more resources to support the ambitions of STEM students of all backgrounds may be better positioned to reduce postsecondary disparities in STEM fields. Given existing opportunity gaps and resource differentials among schools, corresponding recommendations are suggested. 
    more » « less