skip to main content


Title: Electronic Raman scattering in the 2D antiferromagnet NiPS 3
Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet—NiPS 3 , from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni 2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS 3 . Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.  more » « less
Award ID(s):
1945364 2003343
NSF-PAR ID:
10314327
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
2
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We used a combination of polarized Raman spectroscopy experiment and model magnetism–phonon coupling calculations to study the rich magneto-Raman effect in the two-dimensional (2D) magnet CrI 3 . We reveal a layered-magnetism–assisted phonon scattering mechanism below the magnetic onset temperature, whose Raman excitation breaks time-reversal symmetry, has an antisymmetric Raman tensor, and follows the magnetic phase transitions across critical magnetic fields, on top of the presence of the conventional phonon scattering with symmetric Raman tensors in N -layer CrI 3 . We resolve in data and by calculations that the first-order A g phonon of the monolayer splits into an N -fold multiplet in N -layer CrI 3 due to the interlayer coupling ( N ≥ 2 ) and that the phonons within the multiplet show distinct magnetic field dependence because of their different layered-magnetism–phonon coupling. We further find that such a layered-magnetism–phonon coupled Raman scattering mechanism extends beyond first-order to higher-order multiphonon scattering processes. Our results on the magneto-Raman effect of the first-order phonons in the multiplet and the higher-order multiphonons in N -layer CrI 3 demonstrate the rich and strong behavior of emergent magneto-optical effects in 2D magnets and underline the unique opportunities of spin–phonon physics in van der Waals layered magnets. 
    more » « less
  2. Abstract

    Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single‐molecule magnets (SMMs). Spin‐phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin‐phonon coupling in molecules is challenging. We have found that far‐IR magnetic spectra (FIRMS) of Co(PPh3)2X2(Co‐X; X=Cl, Br, I) reveal rarely observed spin‐phonon coupling as avoided crossings between magnetic andu‐symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero‐field split (ZFS) levels of theS=3/2 electronic ground state were probed by INS, high‐frequency and ‐field EPR (HFEPR), FIRMS, and frequency‐domain FT terahertz EPR (FD‐FT THz‐EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) andgvalues. Ligand‐field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities inCo‐X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin‐phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.

     
    more » « less
  3. Abstract

    Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin–orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2and via plasma stripping followed thermal annealing of MoS2. However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room‐temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low‐energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room‐temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.

     
    more » « less
  4. Abstract

    The van der Waals magnets CrX3(X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two‐dimensional (2D) spintronic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of the antiferromagnetic CrCl3have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. This work reports the growth of large CrCl3flakes down to monolayer thickness via the physical vapor transport technique. Both isolated flakes with well‐defined facets and long stripe samples with the trilayer portion exceeding 60 µm have been obtained. High‐resolution transmission electron microscopy studies show that the CrCl3flakes are single crystalline in the monoclinic structure, consistent with the Raman results. The room temperature stability of the CrCl3flakes decreases with decreasing thickness. The tunneling magnetoresistance of graphite/CrCl3/graphite tunnel junctions confirms that few‐layer CrCl3possesses in‐plane magnetic anisotropy and Néel temperature of 17 K. This study paves the path for developing CrCl3‐based scalable 2D spintronic applications.

     
    more » « less
  5. Strong coupling between light and elementary excitations is emerging as a powerful tool to engineer the properties of solid-state systems. Spin-correlated excitations that couple strongly to optical cavities promise control over collective quantum phenomena such as magnetic phase transitions, but their suitable electronic resonances are yet to be found. Here, we report strong light–matter coupling in NiPS3, a van der Waals antiferromagnet with highly correlated electronic degrees of freedom. A previously unobserved class of polaritonic quasiparticles emerges from the strong coupling between its spin-correlated excitons and the photons inside a microcavity. Detailed spectroscopic analysis in conjunction with a microscopic theory provides unique insights into the origin and interactions of these exotic magnetically coupled excitations. Our work introduces van der Waals magnets to the field of strong light–matter physics and provides a path towards the design and control of correlated electron systems via cavity quantum electrodynamics. 
    more » « less