skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Charting a New Frontier Integrating Mathematical Modeling in Complex Biological Systems from Molecules to Ecosystems
Abstract Advances in quantitative biology data collection and analysis across scales (molecular, cellular, organismal, and ecological) have transformed how we understand, categorize, and predict complex biological systems. This surge of quantitative data creates an opportunity to apply, develop, and evaluate mathematical models of biological systems and explore novel methods of analysis. Simultaneously, thanks to increased computational power, mathematicians, engineers and physical scientists have developed sophisticated models of biological systems at different scales. Novel modeling schemes can offer deeper understanding of principles in biology, but there is still a disconnect between modeling and experimental biology that limits our ability to fully realize the integration of mathematical modeling and biology. In this work, we explore the urgent need to expand the use of existing mathematical models across biological scales, develop models that are robust to biological heterogeneity, harness feedback loops within the iterative modeling process, and nurture a cultural shift towards interdisciplinary and cross-field interactions. Better integration of biological experimentation and robust mathematical modeling will transform our ability to understand and predict complex biological systems.  more » « less
Award ID(s):
1938948
PAR ID:
10314338
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundAt the molecular level, nonlinear networks of heterogeneous molecules control many biological processes, so that systems biology provides a valuable approach in this field, building on the integration of experimental biology with mathematical modeling. One of the biggest challenges to making this integration a reality is that many life scientists do not possess the mathematical expertise needed to build and manipulate mathematical models well enough to use them as tools for hypothesis generation. Available modeling software packages often assume some modeling expertise. There is a need for software tools that are easy to use and intuitive for experimentalists. ResultsThis paper introduces PlantSimLab, a web-based application developed to allow plant biologists to construct dynamic mathematical models of molecular networks, interrogate them in a manner similar to what is done in the laboratory, and use them as a tool for biological hypothesis generation. It is designed to be used by experimentalists, without direct assistance from mathematical modelers. ConclusionsMathematical modeling techniques are a useful tool for analyzing complex biological systems, and there is a need for accessible, efficient analysis tools within the biological community. PlantSimLab enables users to build, validate, and use intuitive qualitative dynamic computer models, with a graphical user interface that does not require mathematical modeling expertise. It makes analysis of complex models accessible to a larger community, as it is platform-independent and does not require extensive mathematical expertise. 
    more » « less
  2. null (Ed.)
    The study of complex biological systems necessitates computational modeling approaches that are currently underutilized in plant biology. Many plant biologists have trouble identifying or adopting modeling methods to their research, particularly mechanistic mathematical modeling. Here we address challenges that limit the use of computational modeling methods, particularly mechanistic mathematical modeling. We divide computational modeling techniques into either pattern models (e.g., bioinformatics, machine learning, or morphology) or mechanistic mathematical models (e.g., biochemical reactions, biophysics, or population models), which both contribute to plant biology research at different scales to answer different research questions. We present arguments and recommendations for the increased adoption of modeling by plant biologists interested in incorporating more modeling into their research programs. As some researchers find math and quantitative methods to be an obstacle to modeling, we provide suggestions for easy-to-use tools for non-specialists and for collaboration with specialists. This may especially be the case for mechanistic mathematical modeling, and we spend some extra time discussing this. Through a more thorough appreciation and awareness of the power of different kinds of modeling in plant biology, we hope to facilitate interdisciplinary, transformative research. 
    more » « less
  3. Abstract The ability to adequately pump blood throughout the body is the result of tightly regulated feedback mechanisms that exist across many spatial scales in the heart. Diseases which impede the function at any one of the spatial scales can cause detrimental cardiac remodeling and eventual heart failure. An overarching goal of cardiac research is to use engineered heart tissue in vitro to study the physiology of diseased heart tissue, develop cell replacement therapies, and explore drug testing applications. A commonality within the field is to manipulate the flow of mechanical signals across the various spatial scales to direct self‐organization and build functional tissue. Doing so requires an understanding of how chemical, electrical, and mechanical cues can be used to alter the cellular microenvironment. We discuss how mathematical models have been used in conjunction with experimental techniques to explore various structure–function relations that exist across numerous spatial scales. We highlight how a systems biology approach can be employed to recapitulate in vivo characteristics in vitro at the tissue, cell, and subcellular scales. Specific focus is placed on the interplay between experimental and theoretical approaches. Various modeling methods are showcased to demonstrate the breadth and power afforded to the systems biology approach. An overview of modeling methodologies exemplifies how the strengths of different scientific disciplines can be used to supplement and/or inspire new avenues of experimental exploration. This article is categorized under:Models of Systems Properties and Processes > Mechanistic ModelsModels of Systems Properties and Processes > Cellular ModelsModels of Systems Properties and Processes > Organ, Tissue, and Physiological Models 
    more » « less
  4. Cells interact as dynamically evolving ecosystems. While recent single-cell and spatial multi-omics technologies quantify individual cell characteristics, predicting their evolution requires mathematical modeling. We propose a conceptual framework—a cell behavior hypothesis grammar—that uses natural language statements (cell rules) to create mathematical models. This enables systematic integration of biological knowledge and multi-omics data to generate in silico models, enabling virtual “thought experiments” that test and expand our understanding of multicellular systems and generate new testable hypotheses. This paper motivates and describes the grammar, offers a reference implementation, and demonstrates its use in developing both de novo mechanistic models and those informed by multi-omics data. We show its potential through examples in cancer and its broader applicability in simulating brain development. This approach bridges biological, clinical, and systems biology research for mathematical modeling at scale, allowing the community to predict emergent multicellular behavior. 
    more » « less
  5. Synopsis Biology as a field has transformed since the time of its foundation from an organized enterprise cataloging the diversity of the natural world to a quantitatively rigorous science seeking to answer complex questions about the functions of organisms and their interactions with each other and their environments. As the mathematical rigor of biological analyses has improved, quantitative models have been developed to describe multi-mechanistic systems and to test complex hypotheses. However, applications of quantitative models have been uneven across fields, and many biologists lack the foundational training necessary to apply them in their research or to interpret their results to inform biological problem-solving efforts. This gap in scientific training has created a false dichotomy of “biologists” and “modelers” that only exacerbates the barriers to working biologists seeking additional training in quantitative modeling. Here, we make the argument that all biologists are modelers and are capable of using sophisticated quantitative modeling in their work. We highlight four benefits of conducting biological research within the framework of quantitative models, identify the potential producers and consumers of information produced by such models, and make recommendations for strategies to overcome barriers to their widespread implementation. Improved understanding of quantitative modeling could guide the producers of biological information to better apply biological measurements through analyses that evaluate mechanisms, and allow consumers of biological information to better judge the quality and applications of the information they receive. As our explanations of biological phenomena increase in complexity, so too must we embrace modeling as a foundational skill. 
    more » « less