Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding cellular engagement with its environment is essential to control and monitor metabolism. Molecular Communication theory (MC) offers a computational means to identify environmental perturbations that direct or signify cellular behaviors by quantifying the information about a molecular environment that is transmitted through a metabolic system. We developed an model that integrates conventional flux balance analysis metabolic modeling (FBA) and MC to mechanistically expand the scope of MC, and thereby uniquely blends mechanistic biology and information theory to understand how substrate consumption is captured reaction activity, metabolite excretion, and biomass growth. This is enabled by defining several channels through which environmental information transmits in a metabolic network. The information flow in bits that is calculated through this workflow further determines the maximal metabolic effect of environmental perturbations on cellular metabolism and behaviors, since FBA simulates maximal efficiency of the metabolic system. We exemplify this method on two intestinal symbionts – Bacteroides thetaiotaomicron and Methanobrevibacter smithii – and visually consolidated the results into constellation diagrams that facilitate interpretation of information flow from given environments and thereby cultivate the design of controllable biological systems. The unique confluence of metabolic modeling and information theory in this model advances basic understanding of cellular metabolism and has applied value for the Internet of Bio-Nano Things, synthetic biology, microbial ecology, and autonomous laboratories.more » « less
-
Methanogenic archaea are important organisms in the global carbon cycle that grow by producing methane gas. Methanosarcina acetivorans is a methanogenic archaeum that can grow using methylated compounds, carbon monoxide, or acetate and produces renewable methane as a byproduct. However, there is limited knowledge of how combinations of substrates may affect metabolic fluxes in methanogens. Previous studies have shown that heterodisulfide reductase, the terminal oxidase in the electron transport system, is an essential enzyme in all methanogens. Deletion of genes encoding the nonessential methylotrophic heterodisulfide reductase enzyme (HdrABC) results in slower growth rate but increased metabolic efficiency. We hypothesized that increased sulfide, supplementation of mercaptoethanesulfonate (coenzyme M, CoM-SH), or acetate would metabolically alleviate the effect of the ΔhdrABC mutation. Increased sulfide improved growth of the mutant as expected; however, supplementation of both CoM-SH and acetate together were necessary to reduce the effect of the ΔhdrABC mutation. Supplementation of CoM-SH or acetate alone did not improve growth. These results support our model for the role of HdrABC in methanogenesis and suggest M.acetivorans is more efficient at conserving energy when supplemented with acetate. Our study suggests decreased Hdr enzyme activity can be overcome by nutritional supplementation with sulfide or coenzyme M and acetate, which are abundant in anaerobic environments.more » « less
-
Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications.more » « less
-
Claesen, Jan (Ed.)ABSTRACT Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii , are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron . To study their metabolic interactions, we defined and optimized a coculture system and used software testing techniques to analyze growth under a range of conditions representing the nutrient environment of the host. We verify that B. thetaiotaomicron fermentation products are sufficient for M. smithii growth and that accumulation of fermentation products alters secretion of metabolites by B. thetaiotaomicron to benefit M. smithii . Studies suggest that B. thetaiotaomicron metabolic efficiency is greater in the absence of fermentation products or in the presence of M. smithii . Under certain conditions, B. thetaiotaomicron and M. smithii form interspecies granules consistent with behavior observed for syntrophic partnerships between microbes in soil or sediment enrichments and anaerobic digesters. Furthermore, when vitamin B 12 , hematin, and hydrogen gas are abundant, coculture growth is greater than the sum of growth observed for monocultures, suggesting that both organisms benefit from a synergistic mutual metabolic relationship. IMPORTANCE The human gut functions through a complex system of interactions between the host human tissue and the microbes which inhabit it. These diverse interactions are difficult to model or examine under controlled laboratory conditions. We studied the interactions between two dominant human gut microbes, B. thetaiotaomicron and M. smithii , using a seven-component culturing approach that allows the systematic examination of the metabolic complexity of this binary microbial system. By combining high-throughput methods with machine learning techniques, we were able to investigate the interactions between two dominant genera of the gut microbiome in a wide variety of environmental conditions. Our approach can be broadly applied to studying microbial interactions and may be extended to evaluate and curate computational metabolic models. The software tools developed for this study are available as user-friendly tutorials in the Department of Energy KBase.more » « less
-
null (Ed.)Synopsis Information, energy, and matter are fundamental properties of all levels of biological organization, and life emerges from the continuous flux of matter, energy, and information. This perspective piece defines and explains each of the three pillars of this nexus. We propose that a quantitative characterization of the complex interconversions between matter, energy, and information that comprise this nexus will help us derive biological insights that connect phenomena across different levels of biological organization. We articulate examples from multiple biological scales that highlight how this nexus approach leads to a more complete understanding of the biological system. Metrics of energy, information, and matter can provide a common currency that helps link phenomena across levels of biological organization. The propagation of energy and information through levels of biological organization can result in emergent properties and system-wide changes that impact other hierarchical levels. Deeper consideration of measured imbalances in energy, information, and matter can help researchers identify key factors that influence system function at one scale, highlighting avenues to link phenomena across levels of biological organization and develop predictive models of biological systems.more » « less
-
Abstract Advances in quantitative biology data collection and analysis across scales (molecular, cellular, organismal, and ecological) have transformed how we understand, categorize, and predict complex biological systems. This surge of quantitative data creates an opportunity to apply, develop, and evaluate mathematical models of biological systems and explore novel methods of analysis. Simultaneously, thanks to increased computational power, mathematicians, engineers and physical scientists have developed sophisticated models of biological systems at different scales. Novel modeling schemes can offer deeper understanding of principles in biology, but there is still a disconnect between modeling and experimental biology that limits our ability to fully realize the integration of mathematical modeling and biology. In this work, we explore the urgent need to expand the use of existing mathematical models across biological scales, develop models that are robust to biological heterogeneity, harness feedback loops within the iterative modeling process, and nurture a cultural shift towards interdisciplinary and cross-field interactions. Better integration of biological experimentation and robust mathematical modeling will transform our ability to understand and predict complex biological systems.more » « less
-
Wastewater biosolids are a promising feedstock for production of value-added renewable chemicals. Methane-producing archaea (methanogens) are already used to produce renewable biogas via the anaerobic treatment of wastewater. The ability of methanogens to efficiently convert dissolved organic carbon into methane makes them an appealing potential platform for biorefining using metabolic engineering. We have engineered a strain of the methanogen Methanosarcina acetivorans to produce the volatile hemiterpene isoprene in addition to methane. The engineered strain was adapted to grow in municipal wastewater through cultivation in a synthetic wastewater medium. When introduced to municipal wastewater the engineered methanogens were able to compete with the indigenous microorganisms and produce 0.97 mM of isoprene (65.9 ± 21.3 g per m3 of effluent). The production of isoprene in wastewater appears to be dependent on the quantity of available methanogenic substrate produced during upstream digestion by heterotrophic fermenters. This shows that with minimal adaptation it is possible to drop-in engineered methanogens to existing wastewater environments and attain value-added products in addition to the processing of wastewater. This shows the potential for utilizing methanogens as a platform for low-cost production of renewable materials without expensive feedstocks or the need to build or adapt existing facilities.more » « less