- Award ID(s):
- 1938948
- NSF-PAR ID:
- 10314339
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 2076-3417
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Atomi, Haruyuki (Ed.)ABSTRACT Isoprene is a valuable petrochemical used for a wide variety of consumer goods, such as adhesives and synthetic rubber. We were able to achieve a high yield of renewable isoprene by taking advantage of the naturally high-flux mevalonate lipid synthesis pathway in anaerobic methane-producing archaea (methanogens). Our study illustrates that by genetically manipulating Methanosarcina species methanogens, it is possible to create organisms that grow by producing the hemiterpene isoprene. Mass balance measurements show that engineered methanogens direct up to 4% of total carbon flux to isoprene, demonstrating that methanogens produce higher isoprene yields than engineered yeast, bacteria, or cyanobacteria, and from inexpensive feedstocks. Expression of isoprene synthase resulted in increased biomass and changes in gene expression that indicate that isoprene synthesis depletes membrane precursors and redirects electron flux, enabling isoprene to be a major metabolic product. Our results demonstrate that methanogens are a promising engineering chassis for renewable isoprene synthesis. IMPORTANCE A significant barrier to implementing renewable chemical technologies is high production costs relative to those for petroleum-derived products. Existing technologies using engineered organisms have difficulty competing with petroleum-derived chemicals due to the cost of feedstocks (such as glucose), product extraction, and purification. The hemiterpene monomer isoprene is one such chemical that cannot currently be produced using cost-competitive renewable biotechnologies. To reduce the cost of renewable isoprene, we have engineered methanogens to synthesize it from inexpensive feedstocks such as methane, methanol, acetate, and carbon dioxide. The “isoprenogen” strains we developed have potential to be used for industrial production of inexpensive renewable isoprene.more » « less
-
Garcia-Perez, Manuel (Ed.)Renewable natural gas (RNG) often generates usable energy from waste products, reduces methane emissions, and creates new revenue streams. However, not all RNG projects are financially or technically feasible. We assessed the total RNG potential of currently available local waste feedstocks in the state of Minnesota and analyzed the financial and technical limitations for project development. We found that under ideal production conditions the RNG potential from municipal solid waste, dairy and hog farm manure, and municipal wastewater solids in the state could replace approximately 7.5% of current Minnesota natural gas use. We find that technical and financial factors such as project size, financing, and distance to an existing pipeline further reduce the number of feasible RNG project sites in Minnesota. Virtual pipelines – trucking RNG short distances to pipeline injection stations – improved the modeled profitability of 124 out of 175 projects (71%) by decreasing transmission costs. No projects are financially feasible without state or federal renewable fuel credit programs because direct sale of RNG alone does not cover project costs. Dairy manure projects have the lowest levelized cost of energy, the highest total revenue, and the shortest payback period compared to municipal solid waste landfill and wastewater treatment plant projects of similar size. This difference is because manure anaerobic digestion projects are eligible for larger credits under renewable fuel credit programs than municipal solid waste landfills and wastewater treatment plants, but this credit system limits end-use of the RNG to vehicle fuel. Our contribution helps provide an outline for the magnitude of current natural gas use in Minnesota replaceable via RNG projects.more » « less
-
Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications.more » « less
-
Abstract The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (
T b = 56°C), ideally produced from lignocellulosic biomass.Caldicellulosiruptor bescii (T opt78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase fromClostridium thermocellum , acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates thatC. bescii can be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2, without net production of its native fermentation products, acetate and lactate. -
As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ 13 C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553–586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted.more » « less