skip to main content


Title: Interspecific Competition is Prevalent and Stabilizes Plant Production in a Brackish Marsh Facing Sea Level Rise
Tidal marsh plant species commonly zonate along environmental gradients such as elevation, but it is not always clear to what extent plant distribution is driven by abiotic factors vs. biotic interactions. Yet, the distinction has importance for how plant communities will respond to future change such as higher sea level, particularly given the distinct flooding tolerances and contributions to elevation gain of different species. We used observations from a 33-year experiment to determine co-occurrence patterns for the sedge, Schoenoplectus americanus, and two C4 grasses, Spartina patens and Distichlis spicata, to infer functional group interactions. Then, we conducted a functional group removal experiment to directly assess the interaction between sedge and grasses throughout the range in which they cooccur. The observational record suggested negative interactions between sedge and grasses across sedge- and grass-dominated plots, though the relationship weakened in years with greater flooding stress. The removal experiment revealed mutual release effects, indicating competition was the predominant interaction, and here, too, competition tended to weaken, though nonsignificantly, in more flooded, lower elevation zones. Whereas zonation patterns in undisturbed portions of marsh suggest that the sedge will dominate this marsh as flooding stress increases with sea level rise, we propose that grasses may exhibit a competition release effect and contribute to biomass and elevation gain even in sedge-dominated communities as sea level continues to rise. Even as abiotic stresses drive changes in the relative contributions of sedges and grasses, competition among them moderates fluctuations in total plant biomass production through time.  more » « less
Award ID(s):
2051343
NSF-PAR ID:
10314484
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Estuaries and Coasts
ISSN:
1559-2723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elevation is a major driver of plant ecology and sediment dynamics in tidal wetlands, so accurate and precise spatial data are essential for assessing wetland vulnerability to sea-level rise and making forecasts. We performed survey-grade elevation and vegetation surveys of the Global Change Research Wetland, a brackish microtidal wetland in the Chesapeake Bay estuary, Maryland (USA), to both intercompare unbiased digital elevation model (DEM) creation techniques and to describe niche partitioning of several common tidal wetland plant species. We identified a tradeoff between scalability and performance in creating unbiased DEMs, with more data intensive methods such as kriging performing better than 3 more scalable methods involving postprocessing of light detection and ranging (LiDAR)-based DEMs. The LiDAR Elevation Correction with Normalized Difference Vegetation Index (LEAN) method provided a compromise between scalability and performance, although it underpredicted variability in elevation. In areas where native plants dominated, the sedge Schoenoplectus americanus occupied more frequently flooded areas (median: 0.22, 95% range: 0.09 to 0.31 m relative to North America Vertical Datum of 1988 [NAVD88]) and the grass Spartina patens, less frequently flooded (0.27, 0.1 to 0.35 m NAVD88). Non-native Phragmites australis dominated at lower elevations more than the native graminoids, but had a wide flooding tolerance, encompassing both their ranges (0.19, −0.05 to 0.36 m NAVD88). The native shrub Iva frutescens also dominated at lower elevations (0.20, 0.04 to 0.30 m NAVD88), despite being previously described as a high marsh species. These analyses not only provide valuable context for the temporally rich but spatially restricted data collected at a single well-studied site, but also provide broad insight into mapping techniques and species zonation. 
    more » « less
  2. Aboveground biomass and plant density were measured non-destructively as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Biomass was calculated from plant height measurements using allometric equations. Annual productivity was calculated from approximately-monthly biomass estimates. In addition to plant height measurements, observations of snails in sample plots were recorded. Other data collected as part of the project include marsh surface elevation and porewater nutrient concentrations. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Sampling began at one location in 1984, and at three additional locations in 1986. Sampling occurred approximately monthly through 2022. The study is on-going. There are four sampling locations at two sites. Two locations are in the low marsh; two locations are in the high marsh. One high marsh location had control sampling plots in addition to plots fertilized with nitrogen and phosphorus. 
    more » « less
  3. Marsh elevation was measured with a Surface Elevation Table (SET) as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Other data collected as part of the project include aboveground annual primary productivity, plant biomass, plant density and porewater nutrient concentrations. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at 7 Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Marsh elevation sampling began in 1990, 1991, 1996 or 2000, depending on the site. Sampling occurred approximately monthly or approximately annually through 2022. The study is on-going. Additionally, some plots were fertilized with nitrogen and phosphorus. 
    more » « less
  4. Abstract Question

    Understanding the sensitivity and magnitude of plant community responses in tundra wetlands to herbivory and warming is pressing as these ecosystems are increasingly threatened by changes in grazing pressure and higher temperatures. Here, we ask to what extent different low‐Arctic coastal wetland plant communities are affected by short‐term goose grazing and warming, and whether these communities differ in their responses.

    Location

    Yukon–Kuskokwim Delta, Alaska.

    Methods

    We conducted an experiment where we simulated goose grazing by clipping the vegetation and summer warming by using open‐top chambers in three plant communities along a 6‐km coastal–inland gradient. We assessed plant community compositional changes following two years of treatments.

    Results

    Grazing had stronger effects than warming on both plant functional group and species composition. Overall, grazing decreased the abundance of grasses and sedges and increased the abundance of forbs, whereas warming only caused a decrease in forb abundance. However, plant communities and functional groups, both within and across communities, varied widely in their responses to treatments. Grazing decreased grass abundance (−25%) and increased forb abundance (+44%) in the two more coastal communities, and reduced sedge abundance (−22%) only in the most inland community. Warming only decreased forb abundance (−18%) in the most coastal community, which overall was the most responsive to treatments.

    Conclusions

    We show that short‐term goose grazing predominates over short‐term summer warming in eliciting compositional changes in three different low‐Arctic coastal wetland plant communities. Yet, responses varied among communities and the same functional groups could respond differently across them, highlighting the importance of investigating the effects of biotic and abiotic drivers in different contexts. By showing that tundra wetland plant communities can differ in their immediate sensitivity to goose grazing and, though to a lesser extent, warming, our findings have implications for the functioning of these rapidly changing high‐latitude ecosystems.

     
    more » « less
  5. Porewater nutrient concentrations were measured as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Other data collected as part of the project include aboveground macrophyte biomass, plant density, marsh surface elevation and annual above ground primary productivity. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Sampling began at two locations in December 1993, and at three additional locations in January 1994. Sampling occurred approximately monthly at these 5 locations through 2023. Sampling occurred at a sixth location from 2006 to 2010. The site was a dieback site that had recovered by 2010. At the other sites, the study is on-going. Porewater was collected at multiple depths from diffusion samplers and was analyzed for sulfide, salinity, ammonium, phosphate, and iron concentrations. There are five sampling locations at three sites. Two locations are in the low marsh; three locations are in the high marsh. One high marsh location had control sampling plots in addition to plots fertilized with nitrogen and phosphorus. 
    more » « less