- Award ID(s):
- 1654853
- NSF-PAR ID:
- 10421224
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Aboveground biomass and plant density were measured non-destructively as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Biomass was calculated from plant height measurements using allometric equations. Annual productivity was calculated from approximately-monthly biomass estimates. In addition to plant height measurements, observations of snails in sample plots were recorded. Other data collected as part of the project include marsh surface elevation and porewater nutrient concentrations. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Sampling began at one location in 1984, and at three additional locations in 1986. Sampling occurred approximately monthly through 2022. The study is on-going. There are four sampling locations at two sites. Two locations are in the low marsh; two locations are in the high marsh. One high marsh location had control sampling plots in addition to plots fertilized with nitrogen and phosphorus.more » « less
-
Porewater nutrient concentrations were measured as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Other data collected as part of the project include aboveground macrophyte biomass, plant density, marsh surface elevation and annual above ground primary productivity. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Sampling began at two locations in December 1993, and at three additional locations in January 1994. Sampling occurred approximately monthly at these 5 locations through 2023. Sampling occurred at a sixth location from 2006 to 2010. The site was a dieback site that had recovered by 2010. At the other sites, the study is on-going. Porewater was collected at multiple depths from diffusion samplers and was analyzed for sulfide, salinity, ammonium, phosphate, and iron concentrations. There are five sampling locations at three sites. Two locations are in the low marsh; three locations are in the high marsh. One high marsh location had control sampling plots in addition to plots fertilized with nitrogen and phosphorus.more » « less
-
The movement of salt marshes into uplands and marsh submergence as sea level rises is well documented; however, predicting how coastal marshes will respond to rising sea levels is constrained by a lack of process-based understanding of how various marsh zones adjust to changes in sea level. To assess the way in which salt-marsh zones differ in their elevation response to sea-level change, and to evaluate how potential hydrologic drivers influence the response, surface elevation tables, marker horizons, and shallow rod surface elevation tables were installed in a Virginia salt marsh in three zones that differed in elevation and vegetation type. Decadal rates of elevation change, surface accretion, and shallow subsidence or expansion were examined in the context of hydrologic drivers that included local sea-level rise, flooding frequency, hurricane storm-surge, and precipitation. Surface elevation increases were fastest in the low-elevation zone, intermediate in the middle-elevation zone, and slowest in the high-elevation zone. These rates are similar to (low- and middle-marsh) or less than (high-marsh) local rates of sea-level rise. Root-zone expansion, presumably due to root growth and organic matter accumulation, varied among the three salt marsh zones and accounted for 37%, but probably more, of the increase in marsh surface elevation. We infer that, during marsh transgression, soil-forming processes shift from biogenic (high marsh) to minerogenic (low marsh) in response, either directly or indirectly, to changing hydrologic drivers.more » « less
-
Coastal salt marshes are biologically productive ecosystems that generate and sequester significant quantities of organic matter. Plant biomass varies spatially within a salt marsh and it is tedious and often logistically impractical to quantify biomass from field measurements across an entire landscape. Satellite data are useful for estimating aboveground biomass, however, high-resolution data are needed to resolve the spatial details within a salt marsh. This study used 3-m resolution multispectral data provided by Planet to estimate aboveground biomass within two salt marshes, North Inlet-Winyah Bay (North Inlet) National Estuary Research Reserve, and Plum Island Ecosystems (PIE) Long-Term Ecological Research site. The Akaike information criterion analysis was performed to test the fidelity of several alternative models. A combination of the modified soil vegetation index 2 (MSAVI2) and the visible difference vegetation index (VDVI) gave the best fit to the square root-normalized biomass data collected in the field at North Inlet (Willmott’s index of agreement d = 0.74, RMSE = 223.38 g/m2, AICw = 0.3848). An acceptable model was not found among all models tested for PIE data, possibly because the sample size at PIE was too small, samples were collected over a limited vertical range, in a different season, and from areas with variable canopy architecture. For North Inlet, a model-derived landscape scale biomass map showed differences in biomass density among sites, years, and showed a robust relationship between elevation and biomass. The growth curve established in this study is particularly useful as an input for biogeomorphic models of marsh development. This study showed that, used in an appropriate model with calibration, Planet data are suitable for computing and mapping aboveground biomass at high resolution on a landscape scale, which is needed to better understand spatial and temporal trends in salt marsh primary production.more » « less
-
Abstract An accelerating global rate of sea level rise (SLR), coupled with direct human impacts to coastal watersheds and shorelines, threatens the continued survival of salt marshes. We developed a new landscape‐scale numerical model of salt marsh evolution and applied it to marshes in the Plum Island Estuary (Massachusetts, U.S.A.), a sediment‐deficient system bounded by steep uplands. To capture complexities of vertical accretion across the marsh platform, we employed a novel approach that incorporates spatially variable suspended sediment concentrations and biomass of multiple plant species as functions of elevation and distance from sediment sources. The model predicts a stable areal extent of Plum Island marshes for a variety of SLR scenarios through 2100, where limited marsh drowning is compensated by limited marsh migration into adjacent uplands. Nevertheless, the model predicts widespread conversion of high marsh vegetation to low marsh vegetation, and accretion deficits that indicate eventual marsh drowning. Although sediment‐deficient marshes bounded by steep uplands are considered extremely vulnerable to SLR, our results highlight that marshes with high elevation capital can maintain their areal extent for decades to centuries even under conditions in which they will inevitably drown.