skip to main content


Title: Cartesian Meshing Spherical Earth (CMSE): A Code Package to Incorporate the Spherical Earth in SPECFEM3D Cartesian Simulations
Abstract The SPECFEM3D_Cartesian code package is widely used in simulating seismic wave propagation on local and regional scales due to its computational efficiency compared with the one-chunk version of the SPECFEM3D_Globe code. In SPECFEM3D_Cartesian, the built-in meshing tool maps a spherically curved cube to a rectangular cube using the Universal Transverse Mercator projection (UTM). Meanwhile, the geodetic east, north, and up directions are assigned as the local x–y–z directions. This causes coordinate orientation issues in simulating waveform propagation in regions larger than 6° × 6° or near the Earth’s polar regions. In this study, we introduce a new code package, named Cartesian Meshing Spherical Earth (CMSE), that can accurately mesh the 3D geometry of the Earth’s surface under the Cartesian coordinate frame, while retaining the geodetic directions. To benchmark our new package, we calculate the residual amplitude of the CMSE synthetics with respect to the reference synthetics calculated by SPECFEM3D_Globe. In the regional scale simulations with an area of 1300 km × 1300 km, we find a maximum of 5% amplitude residual for the SPECFEM3D_Cartesian synthetics using the mesh generated by the CMSE, much smaller than the maximum amplitude residual of 100% for the synthetics based on its built-in meshing tool. Therefore, our new meshing tool CMSE overcomes the limitations of the internal mesher used by SPECFEM3D_Cartesian and can be used for more accurate waveform simulations in larger regions beyond one UTM zone. Furthermore, CMSE can deal with regions at the south and north poles that cannot be handled by the UTM projection. Although other external code packages can be used to mesh the curvature of the Earth, the advantage of the CMSE code is that it is open-source, easy to use, and fully integrated with SPECFEM3D_Cartesian.  more » « less
Award ID(s):
1806412 1942431
NSF-PAR ID:
10314490
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The dynamical core that predicts the three‐dimensional vorticity rather than the momentum, which is called Vector‐Vorticity Model (VVM), is implemented on a cubed sphere. Its horizontal coordinate system is not restricted to orthogonal, while the vertical coordinate is orthogonal to the horizontal surface. Accordingly, all the governing equations of the VVM, which are originally developed with Cartesian coordinates, are rewritten in terms of general curvilinear coordinates. The local coordinates on each cube surface are constructed with the gnomonic equiangular projection. Using global channel domains, the VVM on the cubed sphere has been evaluated by (1) advecting a passive tracer with a bell‐shaped initial perturbation along an east‐west latitude circle and along a north‐south meridional circle and (2) simulating the evolution of barotropic and baroclinic instabilities. The simulated results with the cubed‐sphere grids are compared to analytic solutions or those with the regular longitude‐latitude grids. The convergence with increasing spatial resolution is also quantified using standard error norms. The comparison shows that the solutions with the cubed‐sphere grids are quite reasonable for both linear and nonlinear problems when high resolutions are used. With coarse resolution, degeneracy appears in the solutions of the nonlinear problems such as spurious wave growth; however, it is effectively reduced with increased resolution. Based on the encouraging results in this study, we intend to use this model as the cloud‐resolving component in a global Quasi‐Three‐Dimensional Multiscale Modeling Framework.

     
    more » « less
  2. Abstract

    Our understanding of the tectonic development of the African continent and the interplay between its geological provinces is hindered by unevenly distributed seismic instrumentation. In order to better understand the continent, we used long‐period ambient noise full‐waveform tomography on data collected from 186 broadband seismic stations throughout Africa and surrounding regions to better image the upper mantle structure. We extracted empirical Green's functions from ambient seismic noise using a frequency‐time normalization method and retrieved coherent signal at periods of 7–340 s. We simulated wave propagation through a heterogeneous Earth using a spherical finite‐difference approach to obtain synthetic waveforms, measured the misfit as phase delay between the data and synthetics, calculated numerical sensitivity kernels using the scattering integral approach, and iteratively inverted for structure. The resulting images of isotropic, shear wave speed for the continent reveal segmented, low‐velocity upper mantle beneath the highly magmatic northern and eastern sections of the East African Rift System (EARS). In the southern and western sections, high‐velocity upper mantle dominates, and distinct, low‐velocity anomalies are restricted to regions of current volcanism. At deeper depths, the southern and western EARS transition to low velocities. In addition to the EARS, several low‐velocity anomalies are scattered through the shallow upper mantle beneath Angola and North Africa, and some of these low‐velocity anomalies may be connected to a deeper feature. Distinct upper mantle high‐velocity anomalies are imaged throughout the continent and suggest multiple cratonic roots within the Congo region and possible cratonic roots within the Sahara Metacraton.

     
    more » « less
  3. null (Ed.)
    SUMMARY Within the field of seismic modelling in anisotropic media, dynamic ray tracing is a powerful technique for computation of amplitude and phase properties of the high-frequency Green’s function. Dynamic ray tracing is based on solving a system of Hamilton–Jacobi perturbation equations, which may be expressed in different 3-D coordinate systems. We consider two particular coordinate systems; a Cartesian coordinate system with a fixed origin and a curvilinear ray-centred coordinate system associated with a reference ray. For each system we form the corresponding 6-D phase spaces, which encapsulate six degrees of freedom in the variation of position and momentum. The formulation of (conventional) dynamic ray tracing in ray-centred coordinates is based on specific knowledge of the first-order transformation between Cartesian and ray-centred phase-space perturbations. Such transformation can also be used for defining initial conditions for dynamic ray tracing in Cartesian coordinates and for obtaining the coefficients involved in two-point traveltime extrapolation. As a step towards extending dynamic ray tracing in ray-centred coordinates to higher orders we establish detailed information about the higher-order properties of the transformation between the Cartesian and ray-centred phase-space perturbations. By numerical examples, we (1) visualize the validity limits of the ray-centred coordinate system, (2) demonstrate the transformation of higher-order derivatives of traveltime from Cartesian to ray-centred coordinates and (3) address the stability of function value and derivatives of volumetric parameters in a higher-order representation of the subsurface model. 
    more » « less
  4. Abstract

    We have extended the distributional finite difference method (DFDM) to simulate the seismic‐wave propagation in 3D regional earth models. DFDM shares similarities to the discontinuous finite element method on a global scale and to the finite difference method locally. Instead of using linear staggered finite‐difference operators, we employ DFDM operators based on B‐splines and a definition of derivatives in the sense of distributions, to obtain accurate spatial derivatives. The weighted residuals method used in DFDM's locally weak formalism of spatial derivatives accurately and naturally accounts for the free surface, curvilinear meshing, and solid‐fluid coupling, for which it only requires setting the shear modulus and the continuity condition to zero. The computational efficiency of DFDM is comparable to the spectral element method (SEM) due to the more accurate mass matrix and a new band‐diagonal mass factorization. Numerical examples show that the superior accuracy of the band‐diagonal mass and stiffness matrices in DFDM enables fewer points per wavelength, approaching the spectral limit, and compensates for the increased computational burden due to four Lebedev staggered grids. Specifically, DFDM needs 2.5 points per wavelength, compared to the five points per wavelength required in SEM for 0.5% waveform error in a homogeneous model. Notably, while maintaining the same accuracy in the solid domain, DFDM demonstrates superior accuracy in the fluid domain compared to SEM. To validate its accuracy and flexibility, we present various 3D benchmarks involving homogeneous and heterogeneous regional elastic models and solid‐fluid coupling in both Cartesian and spherical settings.

     
    more » « less
  5. This paper develops a tree-topological local mesh refinement (TLMR) method on Cartesian grids for the simulation of bio-inspired flow with multiple moving objects. The TLMR nests refinement mesh blocks of structured grids to the target regions and arrange the blocks in a tree topology. The method solves the time-dependent incompressible flow using a fractional-step method and discretizes the Navier-Stokes equation using a finite-difference formulation with an immersed boundary method to resolve the complex boundaries. When iteratively solving the discretized equations across the coarse and fine TLMR blocks, for better accuracy and faster convergence, the momentum equation is solved on all blocks simultaneously, while the Poisson equation is solved recursively from the coarsest block to the finest ones. When the refined blocks of the same block are connected, the parallel Schwarz method is used to iteratively solve both the momentum and Poisson equations. Convergence studies show that the algorithm is second-order accurate in space for both velocity and pressure, and the developed mesh refinement technique is benchmarked and demonstrated by several canonical flow problems. The TLMR enables a fast solution to an incompressible flow problem with complex boundaries or multiple moving objects. Various bio-inspired flows of multiple moving objects show that the solver can save over 80% computational time, proportional to the grid reduction when refinement is applied. 
    more » « less