skip to main content

Title: Ecological consequences of large herbivore exclusion in an African savanna: 12 years of data from the UHURU experiment
Diverse communities of large mammalian herbivores (LMH), once widespread, are now rare. LMH exert strong direct and indirect effects on community structure and ecosystem functions, and measuring these effects is important for testing ecological theory and for understanding past, current, and future environmental change. This in turn requires long-term experimental manipulations, owing to the slow and often nonlinear responses of populations and assemblages to LMH removal. Moreover, the effects of particular species or body-size classes within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of these effects often depends on environmental context. Since 2008, we have maintained the Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semi-arid Kenyan savanna. The goals of the UHURU experiment are to measure the effects of removing successively smaller size classes of LMH (mimicking the process of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU experiment comprises three LMH-exclusion treatments and an unfenced control, applied to 9 randomized blocks of contiguous 1-ha plots (n = 36). The fenced treatments are: “MEGA” (exclusion of megaherbivores, elephant and giraffe); “MESO” (exclusion of herbivores ≥40 kg); and “TOTAL” (exclusion of herbivores ≥5 kg). Each block is replicated three times at three sites across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The first five years of data were published previously (Ecological Archives E095-064) and have been used in numerous studies. Since that publication, we have (a) continued to collect data following the original protocols, (b) improved the taxonomic resolution and accuracy of plant and small-mammal identifications, and (c) begun collecting several new data sets. Here, we present updated and extended raw data from the first 12 years of the UHURU experiment (2008–2019). Data include daily rainfall data throughout the experiment; annual surveys of understory plant communities; annual censuses of woody-plant communities; annual measurements of individually tagged woody plants; monthly monitoring of flowering and fruiting phenology; every-other-month small-mammal mark-recapture data; and quarterly large-mammal dung surveys. There are no copyright restrictions; notification of when and how data are used is appreciated and users of UHURU data should cite this data paper when using the data.  more » « less
Award ID(s):
1656527 1930820
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Michener, William K.
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Both termites and large mammalian herbivores (LMH) are savanna ecosystem engineers that have profound impacts on ecosystem structure and function. Both of these savanna engineers modulate many common and shared dietary resources such as woody and herbaceous plant biomass, yet few studies have addressed how they impact one another. In particular, it is unclear how herbivores may influence the abundance of long‐lived termite mounds via changes in termite dietary resources such as woody and herbaceous biomass. While it has long been assumed that abundance and areal cover of termite mounds in the landscape remain relatively stable, most data are observational, and few experiments have tested how termite mound patterns may respond to biotic factors such as changes in large herbivore communities. Here, we use a broad tree density gradient and two landscape‐scale experimental manipulations—the first a multi‐guild large herbivore exclosure experiment (20 years after establishment) and the second a tree removal experiment (8 years after establishment)—to demonstrate that patterns inOdontotermestermite mound abundance and cover are unexpectedly dynamic. Termite mound abundance, but areal cover not significantly, is positively associated with experimentally controlled presence of cattle, but not wild mesoherbivores (15–1,000 kg) or megaherbivores (elephants and giraffes). Herbaceous productivity and tree density, termite dietary resources that are significantly affected by different LMH treatments, are both positive predictors of termite mound abundance. Experimental reductions of tree densities are associated with lower abundances of termite mounds. These results reveal a richly interacting web of relationships among multiple savanna ecosystem engineers and suggest that termite mound abundance and areal cover are intimately tied to herbivore‐driven resource availability.

    more » « less
  2. None (Ed.)
    Abstract Aim

    Evaluate the temporal changes in species diversity, composition, and structure of ephemeral plant communities and the seed bank in response to long‐term herbivore exclusion over 11 years in plots with and without herbivores.


    North‐central Chile.


    We obtained information on ephemeral vegetation cover in August and September using the intercept point method and recorded seed abundance in April. The Bosque Fray Jorge National Park Long‐Term Socio‐Ecological Research (LTSER) provided these records covering 11 years (2009–2019). From the original experiment of 20 plots, we used eight plots divided into two treatments: four plots allowed free access to all herbivores (with herbivores), while the other four plots excluded herbivores (without herbivores).


    We found that Hill–Shannon diversity increased in plant communities with herbivores and a temporal increase in the cover of the dominant species,Plantago hispidula, under herbivore exclusion. In wet years, species richness and temporal turnover of plant communities increased independently of treatment. Although seed abundance differed among treatments and years, population structure remained constant over time and among treatments, suggesting that the seed bank acts as a buffer against shocks that modify plant community dynamics. Structural equation modeling revealed that precipitation, via its positive effects onPlantago hispidula, increases native plant richness to a greater extent than herbivores. However, in the absence of herbivores, precipitation directly affects native species richness. Moreover, we found that precipitation also influences the native species richness of the seed bank, both directly and indirectly, although its impacts exhibit a time lag.


    Our study demonstrates that the temporal dynamics of ephemeral plant communities and seed banks in semi‐arid ecosystems are strongly coupled to climate variability, highlighting the vulnerability of these communities to biodiversity loss and climate change.

    more » « less
  3. Abstract

    Despite wide recognition of the importance of anthropogenically driven changes in large herbivore communities—including both declines in wildlife and increases in livestock—there remain large gaps in our knowledge about the impacts of these changes on plant communities, particularly when combined with concurrent changes in climate. Considering these prominent forms of global change in tandem enables us to better understand controls on savanna vegetation structure and diversity under real‐world conditions.

    We conducted a field experiment using complete and semi‐permeable herbivore exclosures to explore the difference in plant communities among sites with wild herbivores only, with cattle in addition to wild herbivores, and with no large herbivores. To understand variation in effects across climatic contexts, the experiment was replicated at three locations along a topoclimatic gradient in California. Critically, this is the first such experiment to compare cattle and wildlife impacts along an environmental gradient within a single controlled experiment.

    Vegetation structure responded strongly to herbivore treatment regardless of climate. Relative to the isolated effects of wildlife, exclusion of all large herbivores generally increased structural components related to cover and above‐ground biomass while the addition of cattle led to reductions in vegetation cover, litter, shading and standing biomass. Furthermore, wildlife had a consistent neutral or positive effect on plant diversity, while the effect of livestock addition was context dependent. Cattle had a neutral to strongly negative effect at low aridity, but a positive effect at high aridity. These results suggest that (a) herbivore effects can override climate effects on vegetation structure, (b) cattle addition can drive different effects on diversity and (c) herbivore effects on diversity are modulated by climate.

    Synthesis. Our results illustrate very distinctive shifts in plant communities between two realistic forms of change in ungulate herbivore assemblages—livestock addition and large herbivore losses—particularly for plant diversity responses, and that these responses vary across climatic contexts. This finding has important implications for the management and protection of plant biodiversity given that over a quarter of the Earth's land area is managed for livestock and climate regimes are changing globally.

    more » « less
  4. Abstract

    Ecological restoration outcomes are highly variable, undermining efforts to recover biodiversity and ecosystem functions. One poorly understood source of variability is ‘year effects’—interannual variation in environmental conditions during the first year of restoration that alter successional trajectories of plant communities.

    There have been few experimental tests disentangling planting years from other differences among restoration projects (e.g. edaphic conditions, restoration approach), particularly those resolving mechanisms for year effects such as planting‐year rainfall. Moreover, past year effect studies focused almost exclusively on species‐level consequences. Therefore, the extent to which year effects influence the traits of communities is unknown.

    To address these gaps and provide a mechanistic test of how precipitation contributes to year effects, we conducted an experiment where we manipulated rainfall (drought, average and high levels) during the first growing season, replicated across three establishment year treatments to disentangle the effects of precipitation from other drivers of year effects. In each establishment year, we seeded the same species mix to initiate grassland restoration. We then surveyed plant community compositions annually for 5 years to quantify trait responses of restored communities to planting year rainfall.

    We found that variation in planting‐year precipitation altered community assembly trajectories by influencing community‐weighted mean (CWM) trait composition, and these effects persisted for at least 5 years. Over time, CWM specific leaf area and CWM seed mass decreased and CWM plant height increased. The effect of age on CWM plant height was stronger in plots that received mean and high watering treatments compared to drought treatments. This effect was also observed for CWM seed mass, albeit weaker.

    We also found some evidence for planting year effects unrelated to planting‐year rainfall for the three CWM traits, illustrating how interannually varying environmental conditions besides rainfall can generate persistent year effect on plant communities through their traits.

    Synthesis and applications. Our results provide evidence for planting year rainfall interacting with community assembly to alter the functional trait composition of restored grasslands. This suggests that interannual variation in rainfall during establishment is an important source of divergent biodiversity and functional outcomes in restored grasslands.

    more » « less
  5. Abstract

    Management of tree cover, either to curb bush encroachment or to mitigate losses of woody cover to over‐browsing, is a major concern in savanna ecosystems. Once established, trees are often “trapped” as saplings, since interactions among disturbance, plant competition, and precipitation delay sapling recruitment into adult size classes. Saplings can be directly suppressed by wildlife browsing and competition from adjacent plants, and indirectly facilitated by grazers, such as cattle, which feed on neighboring grasses. Yet few experimental studies have simultaneously quantified the effects of cattle and wildlife on sapling growth, particularly over long time scales. We used a series of replicated 4‐ha herbivore‐manipulation plots to investigate the net effects of wildlife and moderate cattle grazing onAcacia drepanolobiumsapling growth over 10 years that encompassed extended wet and dry periods. We also simulated more intense cattle grazing using grass removal treatments (0.5‐m radius around saplings), and we quantified the role of intraspecific tree competition using neighborhood tree surveys (trees within a 3‐m radius). Wildlife, which included elephants, had a positive effect on sapling growth. Wildlife also reduced neighbor tree density during the 10‐yr study, which likely caused the positive effect of wildlife on saplings. Although moderate cattle grazing did not affect sapling growth, grass removal treatments simulating heavy grazing increased sapling growth. Both grass removal and neighbor tree effects on saplings were strongest during above‐average rainfall years following drought. This highlights that livestock‐driven reductions in grass cover and catastrophic wildlife damage to trees during droughts present a need, or an opportunity, for targeted management of sapling growth and woody plant cover during ensuing wet periods.

    more » « less