skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Comparative genome analysis using sample-specific string detection in accurate long reads
Abstract Motivation Comparative genome analysis of two or more whole-genome sequenced (WGS) samples is at the core of most applications in genomics. These include the discovery of genomic differences segregating in populations, case-control analysis in common diseases and diagnosing rare disorders. With the current progress of accurate long-read sequencing technologies (e.g. circular consensus sequencing from PacBio sequencers), we can dive into studying repeat regions of the genome (e.g. segmental duplications) and hard-to-detect variants (e.g. complex structural variants). Results We propose a novel framework for comparative genome analysis through the discovery of strings that are specific to one genome (‘samples-specific’ strings). We have developed a novel, accurate and efficient computational method for the discovery of sample-specific strings between two groups of WGS samples. The proposed approach will give us the ability to perform comparative genome analysis without the need to map the reads and is not hindered by shortcomings of the reference genome and mapping algorithms. We show that the proposed approach is capable of accurately finding sample-specific strings representing nearly all variation (>98%) reported across pairs or trios of WGS samples using accurate long reads (e.g. PacBio HiFi data). Availability and implementation Data, code and instructions for reproducing the results presented in this manuscript are publicly available at https://github.com/Parsoa/PingPong. Supplementary information Supplementary data are available at Bioinformatics Advances online.  more » « less
Award ID(s):
2042518
NSF-PAR ID:
10314676
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Stamatakis, Alexandros
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
1
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural variants (SVs) account for a large amount of sequence variability across genomes and play an important role in human genomics and precision medicine. Despite intense efforts over the years, the discovery of SVs in individuals remains challenging due to the diploid and highly repetitive structure of the human genome, and by the presence of SVs that vastly exceed sequencing read lengths. However, the recent introduction of low-error long-read sequencing technologies such as PacBio HiFi may finally enable these barriers to be overcome. Here we present SV discovery with sample-specific strings (SVDSS)—a method for discovery of SVs from long-read sequencing technologies (for example, PacBio HiFi) that combines and effectively leverages mapping-free, mapping-based and assembly-based methodologies for overall superior SV discovery performance. Our experiments on several human samples show that SVDSS outperforms state-of-the-art mapping-based methods for discovery of insertion and deletion SVs in PacBio HiFi reads and achieves notable improvements in calling SVs in repetitive regions of the genome. 
    more » « less
  2. Abstract

    The PacBio®HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10–25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomesMus musculusandZea mays, as well as two complex genomes, octoploidFragaria × ananassaand the diploid anuranRana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.

     
    more » « less
  3. Abstract

    Long single-molecular sequencing technologies, such as PacBio circular consensus sequencing (CCS) and nanopore sequencing, are advantageous in detecting DNA 5-methylcytosine in CpGs (5mCpGs), especially in repetitive genomic regions. However, existing methods for detecting 5mCpGs using PacBio CCS are less accurate and robust. Here, we present ccsmeth, a deep-learning method to detect DNA 5mCpGs using CCS reads. We sequence polymerase-chain-reaction treated and M.SssI-methyltransferase treated DNA of one human sample using PacBio CCS for training ccsmeth. Using long (≥10 Kb) CCS reads, ccsmeth achieves 0.90 accuracy and 0.97 Area Under the Curve on 5mCpG detection at single-molecule resolution. At the genome-wide site level, ccsmeth achieves >0.90 correlations with bisulfite sequencing and nanopore sequencing using only 10× reads. Furthermore, we develop a Nextflow pipeline, ccsmethphase, to detect haplotype-aware methylation using CCS reads, and then sequence a Chinese family trio to validate it. ccsmeth and ccsmethphase can be robust and accurate tools for detecting DNA 5-methylcytosines.

     
    more » « less
  4. Abstract Motivation

    Recent advances in genomics and precision medicine have been made possible through the application of high throughput sequencing (HTS) to large collections of human genomes. Although HTS technologies have proven their use in cataloging human genome variation, computational analysis of the data they generate is still far from being perfect. The main limitation of Illumina and other popular sequencing technologies is their short read length relative to the lengths of (common) genomic repeats. Newer (single molecule sequencing – SMS) technologies such as Pacific Biosciences and Oxford Nanopore are producing longer reads, making it theoretically possible to overcome the difficulties imposed by repeat regions. Unfortunately, because of their high sequencing error rate, reads generated by these technologies are very difficult to work with and cannot be used in many of the standard downstream analysis pipelines. Note that it is not only difficult to find the correct mapping locations of such reads in a reference genome, but also to establish their correct alignment so as to differentiate sequencing errors from real genomic variants. Furthermore, especially since newer SMS instruments provide higher throughput, mapping and alignment need to be performed much faster than before, maintaining high sensitivity.

    Results

    We introduce lordFAST, a novel long-read mapper that is specifically designed to align reads generated by PacBio and potentially other SMS technologies to a reference. lordFAST not only has higher sensitivity than the available alternatives, it is also among the fastest and has a very low memory footprint.

    Availability and implementation

    lordFAST is implemented in C++ and supports multi-threading. The source code of lordFAST is available at https://github.com/vpc-ccg/lordfast.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Birol, Inanc (Ed.)
    Abstract Motivation Oxford Nanopore sequencing has great potential and advantages in population-scale studies. Due to the cost of sequencing, the depth of whole-genome sequencing for per individual sample must be small. However, the existing single nucleotide polymorphism (SNP) callers are aimed at high-coverage Nanopore sequencing reads. Detecting the SNP variants on low-coverage Nanopore sequencing data is still a challenging problem. Results We developed a novel deep learning-based SNP calling method, NanoSNP, to identify the SNP sites (excluding short indels) based on low-coverage Nanopore sequencing reads. In this method, we design a multi-step, multi-scale and haplotype-aware SNP detection pipeline. First, the pileup model in NanoSNP utilizes the naive pileup feature to predict a subset of SNP sites with a Bi-long short-term memory (LSTM) network. These SNP sites are phased and used to divide the low-coverage Nanopore reads into different haplotypes. Finally, the long-range haplotype feature and short-range pileup feature are extracted from each haplotype. The haplotype model combines two features and predicts the genotype for the candidate site using a Bi-LSTM network. To evaluate the performance of NanoSNP, we compared NanoSNP with Clair, Clair3, Pepper-DeepVariant and NanoCaller on the low-coverage (∼16×) Nanopore sequencing reads. We also performed cross-genome testing on six human genomes HG002–HG007, respectively. Comprehensive experiments demonstrate that NanoSNP outperforms Clair, Pepper-DeepVariant and NanoCaller in identifying SNPs on low-coverage Nanopore sequencing data, including the difficult-to-map regions and major histocompatibility complex regions in the human genome. NanoSNP is comparable to Clair3 when the coverage exceeds 16×. Availability and implementation https://github.com/huangnengCSU/NanoSNP.git. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less