skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SVDSS: structural variation discovery in hard-to-call genomic regions using sample-specific strings from accurate long reads
Structural variants (SVs) account for a large amount of sequence variability across genomes and play an important role in human genomics and precision medicine. Despite intense efforts over the years, the discovery of SVs in individuals remains challenging due to the diploid and highly repetitive structure of the human genome, and by the presence of SVs that vastly exceed sequencing read lengths. However, the recent introduction of low-error long-read sequencing technologies such as PacBio HiFi may finally enable these barriers to be overcome. Here we present SV discovery with sample-specific strings (SVDSS)—a method for discovery of SVs from long-read sequencing technologies (for example, PacBio HiFi) that combines and effectively leverages mapping-free, mapping-based and assembly-based methodologies for overall superior SV discovery performance. Our experiments on several human samples show that SVDSS outperforms state-of-the-art mapping-based methods for discovery of insertion and deletion SVs in PacBio HiFi reads and achieves notable improvements in calling SVs in repetitive regions of the genome.  more » « less
Award ID(s):
2042518
PAR ID:
10395441
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature Methods
ISSN:
1548-7091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The combination of ultra-long (UL) Oxford Nanopore Technologies (ONT) sequencing reads with long, accurate Pacific Bioscience (PacBio) High Fidelity (HiFi) reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, “telomere-to-telomere” genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT “Duplex” sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy. To evaluate this new data type, we generated ONT Duplex data for three widely studied genomes: human HG002, Solanum lycopersicum Heinz 1706 (tomato), and Zea mays B73 (maize). For the diploid, heterozygous HG002 genome, we also used “Pore-C” chromatin contact mapping to completely phase the haplotypes. We found the accuracy of Duplex data to be similar to HiFi sequencing, but with read lengths tens of kilobases longer, and the Pore-C data to be compatible with existing diploid assembly algorithms. This combination of read length and accuracy enables the construction of a high-quality initial assembly, which can then be further resolved using the UL reads, and finally phased into chromosome-scale haplotypes with Pore-C. The resulting assemblies have a base accuracy exceeding 99.999% (Q50) and near-perfect continuity, with most chromosomes assembled as single contigs. We conclude that ONT sequencing is a viable alternative to HiFi sequencing for de novo genome assembly, and provides a multirun single-instrument solution for the reconstruction of complete genomes. 
    more » « less
  2. Stamatakis, Alexandros (Ed.)
    Abstract Motivation Comparative genome analysis of two or more whole-genome sequenced (WGS) samples is at the core of most applications in genomics. These include the discovery of genomic differences segregating in populations, case-control analysis in common diseases and diagnosing rare disorders. With the current progress of accurate long-read sequencing technologies (e.g. circular consensus sequencing from PacBio sequencers), we can dive into studying repeat regions of the genome (e.g. segmental duplications) and hard-to-detect variants (e.g. complex structural variants). Results We propose a novel framework for comparative genome analysis through the discovery of strings that are specific to one genome (‘samples-specific’ strings). We have developed a novel, accurate and efficient computational method for the discovery of sample-specific strings between two groups of WGS samples. The proposed approach will give us the ability to perform comparative genome analysis without the need to map the reads and is not hindered by shortcomings of the reference genome and mapping algorithms. We show that the proposed approach is capable of accurately finding sample-specific strings representing nearly all variation (>98%) reported across pairs or trios of WGS samples using accurate long reads (e.g. PacBio HiFi data). Availability and implementation Data, code and instructions for reproducing the results presented in this manuscript are publicly available at https://github.com/Parsoa/PingPong. Supplementary information Supplementary data are available at Bioinformatics Advances online. 
    more » « less
  3. Abstract Background Structural variants (SVs) play a causal role in numerous diseases but are difficult to detect and accurately genotype (determine zygosity) in whole-genome next-generation sequencing data. SV genotypers that assume that the aligned sequencing data uniformly reflect the underlying SV or use existing SV call sets as training data can only partially account for variant and sample-specific biases. Results We introduce NPSV, a machine learning–based approach for genotyping previously discovered SVs that uses next-generation sequencing simulation to model the combined effects of the genomic region, sequencer, and alignment pipeline on the observed SV evidence. We evaluate NPSV alongside existing SV genotypers on multiple benchmark call sets. We show that NPSV consistently achieves or exceeds state-of-the-art genotyping accuracy across SV call sets, samples, and variant types. NPSV can specifically identify putative de novo SVs in a trio context and is robust to offset SV breakpoints. Conclusions Growing SV databases and the increasing availability of SV calls from long-read sequencing make stand-alone genotyping of previously identified SVs an increasingly important component of genome analyses. By treating potential biases as a “black box” that can be simulated, NPSV provides a framework for accurately genotyping a broad range of SVs in both targeted and genome-scale applications. 
    more » « less
  4. Alkan, Can (Ed.)
    Abstract MotivationDetection of structural variants (SVs) from the alignment of sample DNA reads to the reference genome is an important problem in understanding human diseases. Long reads that can span repeat regions, along with an accurate alignment of these long reads play an important role in identifying novel SVs. Long-read sequencers, such as nanopore sequencing, can address this problem by providing very long reads but with high error rates, making accurate alignment challenging. Many errors induced by nanopore sequencing have a bias because of the physics of the sequencing process and proper utilization of these error characteristics can play an important role in designing a robust aligner for SV detection problems. In this article, we design and evaluate HQAlign, an aligner for SV detection using nanopore sequenced reads. The key ideas of HQAlign include (i) using base-called nanopore reads along with the nanopore physics to improve alignments for SVs, (ii) incorporating SV-specific changes to the alignment pipeline, and (iii) adapting these into existing state-of-the-art long-read aligner pipeline, minimap2 (v2.24), for efficient alignments. ResultsWe show that HQAlign captures about 4%–6% complementary SVs across different datasets, which are missed by minimap2 alignments while having a standalone performance at par with minimap2 for real nanopore reads data. For the common SV calls between HQAlign and minimap2, HQAlign improves the start and the end breakpoint accuracy by about 10%–50% for SVs across different datasets. Moreover, HQAlign improves the alignment rate to 89.35% from minimap2 85.64% for nanopore reads alignment to recent telomere-to-telomere CHM13 assembly, and it improves to 86.65% from 83.48% for nanopore reads alignment to GRCh37 human genome. Availability and implementationhttps://github.com/joshidhaivat/HQAlign.git. 
    more » « less
  5. Abstract Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long‐read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short‐read sequencing and associated analytical methods. SVs most commonly involve non‐coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co‐occur with single‐nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long‐read technologies become commonly implemented in non‐model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years. 
    more » « less