skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: C–O-Selective Cross-Coupling of Chlorinated Phenol Derivatives
Abstract Chemoselective cross-coupling of phenol derivatives is valuable for generating products that retain halides. Here we discuss recent developments in selective cross-couplings of chloroaryl phenol derivatives, with a particular focus on reactions of chloroaryl tosylates. The first example of a C–O-selective Ni-catalyzed Suzuki–Miyaura coupling of chloroaryl tosylates is discussed in detail. 1 Introduction 2 Density Functional Theory Studies on Oxidative Addition at Nickel(0) 3 Stoichiometric Oxidative Addition Studies 4 Development of a Tosylate-Selective Suzuki Coupling 5 Conclusion and Outlook  more » « less
Award ID(s):
1848090
PAR ID:
10314741
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Synlett
Volume:
32
Issue:
15
ISSN:
0936-5214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Palladium-catalyzed Suzuki–Miyaura cross-coupling or aryl halides is widely employed in the synthesis of many important molecules in synthetic chemistry, including pharmaceuticals, polymers and functional materials. Herein, we disclose the first palladium-catalyzed decarbonylative Suzuki–Miyaura cross-coupling of amides for the synthesis of biaryls through the selective activation of the N–C(O) bond of amides. This new method relies on the precise sequence engineering of the catalytic cycle, wherein decarbonylation occurs prior to the transmetallation step. The reaction is compatible with a wide range of boronic acids and amides, providing valuable biaryls in high yields (>60 examples). DFT studies support a mechanism involving oxidative addition, decarbonylation and transmetallation and provide insight into high N–C(O) bond activation selectivity. Most crucially, the reaction establishes the use of palladium catalysis in the biaryl Suzuki–Miyaura cross-coupling of the amide bond and should enable the design of a wide variety of cross-coupling methods in which palladium rivals the traditional biaryl synthesis from aryl halides and pseudohalides. 
    more » « less
  2. The palladium-catalyzed Suzuki-Miyaura cross-coupling of Nacylsuccinimides as versatile acyl-transfer reagents via selective amide N–C bond cleavage is reported. The method is user-friendly since it employs commercially-available, air-stable reagents and catalysts. The cross-coupling is enabled by half-twist of the amide bond in N-acylsuccinimides. These highly effective, crystalline acyltransfer reagents present major advantages over perpendicularly twisted N-acylglutarimides, including low price of the succinimide activating ring, selective metal insertion under redox neutral conditions and high stability of the amide bond towards reaction conditions. Mechanistic studies indicate that oxidative addition is the rate limiting step in this widely applicable protocol. 
    more » « less
  3. Abstract The use of polar solvents MeCN or dimethylformamide (DMF) was previously shown to induce a selectivity switch in the Pd/PtBu3‐catalyzed Suzuki‐Miyaura coupling of chloroaryl triflates. This phenomenon was attributed to the ability of polar solvents to stabilize anionic transition states for oxidative addition. However, we demonstrate that selectivity in this reaction does not trend with solvent dielectic constant. Unlike MeCN and DMF, water, alcohols, and several polar aprotic solvents such as MeNO2, acetone, and propylene carbonate provide the same selectivity as nonpolar solvents. These results indicate that the role of solvent on the selectivity of Suzuki‐Miyaura couplings may be more complex than previously envisioned. Furthermore, this observation has the potential for synthetic value as it greatly broadens the scope of solvents that can be used for chloride‐selective cross coupling of chloroaryl triflates. 
    more » « less
  4. We report a general, highly selective method for Suzuki–Miyaura cross-coupling of N-acylphthalimides via N–C(O) acyl cleavage catalyzed by Pd–PEPPSI-type precatalysts. Of broad synthetic interest, the method introduces N-acylphthalimides as new, bench-stable, highly reactive, twist-controlled, amide-based precursors to acyl-metal intermediates. The reaction delivers functionalized biaryl ketones by acylative Suzuki–Miyaura cross-coupling with readily available boronic acids. Studies demonstrate that cheap, easily prepared, and broadly applicable Pd–PEPPSI-type precatalysts supported by a sterically demanding IPr (1,3-Bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) ancillary ligand provide high yields in this reaction. Preliminary selectivity studies and the effect of Pd–N-heterocyclic carbenes (NHC) complexes with allyl-type throw-away ligands are described. We expect that N-acylphthalimides will find significant use as amide-based acyl coupling reagents and cross-coupling precursors to acyl-metal intermediates. 
    more » « less
  5. A Pd-PEPPSI-catalyzed (Pd = Palladium, PEPPSI = pyridine-enhanced precatalyst preparation stabilization and initiation) Suzuki-Miyaura cross-coupling of aryl esters via selective C–O cleavage at room temperature is reported. The developed catalyst system displays broad substrate scope with respect to both components under practical ambient reaction conditions using readily-available, cheap, modular, air- and moisturestable Pd-NHC precatalyst (NHC = N-heterocyclic carbene). The use of water proved crucial for achieving high reactivity in this coupling. The catalyst system represents the mildest conditions for the Suzuki-Miyaura cross-coupling of aryl esters reported to date. The protocol also allowed for achieving TON >1,000 (TON = turnover number) in the Suzuki-Miyaura ester coupling for the first time. 
    more » « less