skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ROAMM: A customizable and interactive smartwatch platform for patient-generated health data
Older citizens experience a large number of falls and hospitalizations per year throughout the world. These intervening health events (IHEs) such as falls/injuries, illnesses, hospitalizations, are strong precipitants of disability in older adults. They are episodic in nature, extremely difficult to study, and require continuous and long-term monitoring. Wearable technologies with remote capabilities are an ideal solution for capturing information before and after such events. This work presents the ROAMM campaign platform for harnessing sensor and interface capabilities on smart wearables to provide customizable, affordable, and versatile health monitoring that leads to practical remote-based interventions. The platform is flexible, efficient, and scalable for concurrently running multiple studies, each of which consists of patient-reported outcomes, ecological momentary assessments and mental health-related patient responses. Additionally, the system is able to capture and derive ecological, momentary assessments of pain with concurrent mobility tracking that allows life-space mobility ascertainment. The platform supports multiple watches, and we show implementations on both the Samsung Galaxy and Apple series of smartwatches.  more » « less
Award ID(s):
1750192
PAR ID:
10314784
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Thirteenth International Conference on Contemporary Computing (IC3-2021)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Older adults who experience pain are more likely to reduce their community and life-space mobility (ie, the usual range of places in an environment in which a person engages). However, there is significant day-to-day variability in pain experiences that offer unique insights into the consequences on life-space mobility, which are not well understood. This variability is complex and cannot be captured with traditional recall-based pain surveys. As a solution, ecological momentary assessments record repeated pain experiences throughout the day in the natural environment. Objective The aim of this study was to examine the temporal association between ecological momentary assessments of pain and GPS metrics in older adults with symptomatic knee osteoarthritis by using a smartwatch platform called Real-time Online Assessment and Mobility Monitor. Methods Participants (n=19, mean 73.1 years, SD 4.8; female: 13/19, 68%; male: 6/19, 32%) wore a smartwatch for a mean period of 13.16 days (SD 2.94). Participants were prompted in their natural environment about their pain intensity (range 0-10) at random time windows in the morning, afternoon, and evening. GPS coordinates were collected at 15-minute intervals and aggregated each day into excursion, ellipsoid, clustering, and trip frequency features. Pain intensity ratings were averaged across time windows for each day. A random effects model was used to investigate the within and between-person effects. Results The daily mean pain intensities reported by participants ranged between 0 and 8 with 40% reporting intensities ≥2. The within-person associations between pain intensity and GPS features were more likely to be statistically significant than those observed between persons. Within-person pain intensity was significantly associated with excursion size, and others (excursion span, total distance, and ellipse major axis) showed a statistical trend (excursion span: P=.08; total distance: P=.07; ellipse major axis: P=.07). Each point increase in the mean pain intensity was associated with a 3.06 km decrease in excursion size, 2.89 km decrease in excursion span, 5.71 km decrease total distance travelled per day, 31.4 km2 decrease in ellipse area, 0.47 km decrease ellipse minor axis, and 3.64 km decrease in ellipse major axis. While not statistically significant, the point estimates for number of clusters (P=.73), frequency of trips (P=.81), and homestay (P=.15) were positively associated with pain intensity, and entropy (P=.99) was negatively associated with pain intensity. Conclusions In this demonstration study, higher intensity knee pain in older adults was associated with lower life-space mobility. Results demonstrate that a custom-designed smartwatch platform is effective at simultaneously collecting rich information about ecological pain and life-space mobility. Such smart tools are expected to be important for remote health interventions that harness the variability in pain symptoms while understanding their impact on life-space mobility. 
    more » « less
  2. Abstract AimsTo examine how perceived balance problems are associated with self‐reported falls in the past month after controlling for known correlates of falls among older adults. BackgroundApproximately 30% of adults age 65 and older fall each year. Most accidental falls are preventable, and older adults' engagement in fall prevention is imperative. Limited research suggest that older adults do not use the term ‘fall risk’ to describe their risk for falls. Instead, they commonly use the term ‘balance problems’. Yet, commonly used fall risk assessment tools in both primary and acute care do not assess older adults' perceived balance. Design and MethodThe Health Belief Model and the concept of perceived susceptibility served as the theoretical framework. A retrospective, cross‐sectional secondary analysis using data from the National Health and Aging Trends Study from year 2015 was conducted. The outcome variable was self‐reported falls in the last month. ResultsA subsample of independently living participants (N = 7499) was selected, and 10.3% of the sample reported a fall. Multiple logistic regression analysis revealed that the odds of reporting a fall in the past month was 3.4 times (p < .001) greater for participants who self‐reported having a balance problem compared to those who did not. In contrast, fear of falling and perceived memory problems were not uniquely associated with falls. Using a mobility device, reporting pain, poor self‐rated health status, depression and anxiety scores were also associated with falling. Conclusion and ImplicationsOlder adults' perceived balance problem is strongly associated with their fall risk. Perceived balance may be important to discuss with older adults to increase identification of fall risk. Older adults' perceived balance should be included in nursing fall risk assessments and fall prevention interventions. A focus on balance may increase older adults' engagement in fall prevention. 
    more » « less
  3. Introduction Using data collected from hearing aid users’ own hearing aids could improve the customization of hearing aid processing for different users based on the auditory environments they encounter in daily life. Prior studies characterizing hearing aid users’ auditory environments have focused on mean sound pressure levels and proportions of environments based on classifications. In this study, we extend these approaches by introducing entropy to quantify the diversity of auditory environments hearing aid users encounter. Materials and Methods Participants from 4 groups (younger listeners with normal hearing and older listeners with hearing loss from an urban or rural area) wore research hearing aids and completed ecological momentary assessments on a smartphone for 1 week. The smartphone was programmed to sample the processing state (input sound pressure level and environment classification) of the hearing aids every 10 min and deliver an ecological momentary assessment every 40 min. Entropy values for sound pressure levels, environment classifications, and ecological momentary assessment responses were calculated for each participant to quantify the diversity of auditory environments encountered over the course of the week. Entropy values between groups were compared. Group differences in entropy were compared to prior work reporting differences in mean sound pressure levels and proportions of environment classifications. Group differences in entropy measured objectively from the hearing aid data were also compared to differences in entropy measured from the self-report ecological momentary assessment data. Results Auditory environment diversity, quantified using entropy from the hearing aid data, was significantly higher for younger listeners than older listeners. Entropy measured using ecological momentary assessment was also significantly higher for younger listeners than older listeners. Discussion Using entropy, we show that younger listeners experience a greater diversity of auditory environments than older listeners. Alignment of group entropy differences with differences in sound pressure levels and hearing aid feature activation previously reported, along with alignment with ecological momentary response entropy, suggests that entropy is a valid and useful metric. We conclude that entropy is a simple and intuitive way to measure auditory environment diversity using hearing aid data. 
    more » « less
  4. null (Ed.)
    Smart bracelets able to interpret the wearer's emotional state and communicate it to a remote decision-support facility will have broad applications in healthcare, elder care, the military, and other fields. While there are existing commercial embedded devices, such as the Apple Watch, that have health-monitoring sensors, such devices cannot sufficiently support a real-time health-monitoring system with battery-efficient remote data delivery. Ongoing R&D is developing solutions capable of monitoring multiple psycho-physiological signals. Possible hardware configurations include wrist-worn devices and sensors across an augmented reality headset (e.g., HoloLens 2). The device should carry an array of sensors of psycho-physiological signals, including a galvanic skin response sensor, motion sensor, skin temperature sensor, and a heart rate sensor. Output from these sensors can be intelligently fused to monitor the affective state and to determine specific trigger events for the wearer. To enable real-time remote monitoring applications, the device needs to be low-power to allow persistent monitoring while prolonging usage before recharging. For many applications, specialized sensor arrays are required, e.g. a galvanic skin response sensor. An application-flexible device would allow adding/removing sensors and would provide a choice of communication modules (e.g., Bluetooth 5.0 low-energy vs ZigBee). Appropriate configurations of the device would support applications in military health monitoring, drug-addiction mitigation, autistic trigger monitoring, and augmented reality exploration. A configuration example is: motion sensors (3-axis accelerometers, gyroscopes, and magnetometers to track steps, falls, and energy usage), a heart-rate sensor (e.g., an optical-based heart rate sensor with a single monitoring zone using the process of photoplethysmography (PPS)), at least a Bluetooth 5.0 (but a different communication device may be needed depending on the use case), and flash memory to temporarily store data when the device is not remotely communicating. The wearables field has greatly advanced in the quality of sensors; the fusion of multi-sensor data is the current frontier. 
    more » « less
  5. Background Participation in ambulatory cardiac rehabilitation remains low, especially among older adults. Although mobile health cardiac rehabilitation (mHealth-CR) provides a novel opportunity to deliver care, age-specific impairments may limit older adults’ uptake, and efficacy data are currently lacking. Objective This study aims to describe the design of the rehabilitation using mobile health for older adults with ischemic heart disease in the home setting (RESILIENT) trial. Methods RESILIENT is a multicenter randomized clinical trial that is enrolling patients aged ≥65 years with ischemic heart disease in a 3:1 ratio to either an intervention (mHealth-CR) or control (usual care) arm, with a target sample size of 400 participants. mHealth-CR consists of a commercially available mobile health software platform coupled with weekly exercise therapist sessions to review progress and set new activity goals. The primary outcome is a change in functional mobility (6-minute walk distance), which is measured at baseline and 3 months. Secondary outcomes are health status, goal attainment, hospital readmission, and mortality. Among intervention participants, engagement with the mHealth-CR platform will be analyzed to understand the characteristics that determine different patterns of use (eg, persistent high engagement and declining engagement). Results As of December 2021, the RESILIENT trial had enrolled 116 participants. Enrollment is projected to continue until October 2023. The trial results are expected to be reported in 2024. Conclusions The RESILIENT trial will generate important evidence about the efficacy of mHealth-CR among older adults in multiple domains and characteristics that determine the sustained use of mHealth-CR. These findings will help design future precision medicine approaches to mobile health implementation in older adults. This knowledge is especially important in light of the COVID-19 pandemic that has shifted much of health care to a remote, internet-based setting. Trial Registration ClinicalTrials.gov NCT03978130; https://clinicaltrials.gov/ct2/show/NCT03978130 International Registered Report Identifier (IRRID) DERR1-10.2196/32163 
    more » « less