This paper presents a multimodal deep learning framework that utilizes advanced image techniques to improve the performance of clinical analysis heavily dependent on routinely acquired standard images. More specifically, we develop a joint learning network that for the first time leverages the accuracy and reproducibility of myocardial strains obtained from Displacement Encoding with Stimulated Echo (DENSE) to guide the analysis of cine cardiac magnetic resonance (CMR) imaging in late mechanical activation (LMA) detection. An image registration network is utilized to acquire the knowledge of cardiac motions, an important feature estimator of strain values, from standard cine CMRs. Our framework consists of two major components: (i) a DENSE-supervised strain network leveraging latent motion features learned from a registration network to predict myocardial strains; and (ii) a LMA network taking advantage of the predicted strain for effective LMA detection. Experimental results show that our proposed work substantially improves the performance of strain analysis and LMA detection from cine CMR images, aligning more closely with the achievements of DENSE.
more »
« less
A generalized framework for analytic regularization of uniform cubic B-spline displacement fields
Abstract Image registration is an inherently ill-posed problem that lacks the constraints needed for a unique mapping between voxels of the two images being registered. As such, one must regularize the registration to achieve physically meaningful transforms. The regularization penalty is usually a function of derivatives of the displacement-vector field and can be calculated either analytically or numerically. The numerical approach, however, is computationally expensive depending on the image size, and therefore a computationally efficient analytical framework has been developed. Using cubic B-splines as the registration transform, we develop a generalized mathematical framework that supports five distinct regularizers: diffusion, curvature, linear elastic, third-order, and total displacement. We validate our approach by comparing each with its numerical counterpart in terms of accuracy. We also provide benchmarking results showing that the analytic solutions run significantly faster—up to two orders of magnitude—than finite differencing based numerical implementations.
more »
« less
- Award ID(s):
- 1642380
- PAR ID:
- 10314882
- Date Published:
- Journal Name:
- Biomedical Physics & Engineering Express
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2057-1976
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deformable image registration (DIR) is an active research topic in biomedical imaging. There is a growing interest in developing DIR methods based on deep learning (DL). A traditional DL approach to DIR is based on training a convolutional neural network (CNN) to estimate the registration field between two input images. While conceptually simple, this approach comes with a limitation that it exclusively relies on a pre-trained CNN without explicitly enforcing fidelity between the registered image and the reference. We present plug-and-play image registration network (PIRATE) as a new DIR method that addresses this issue by integrating an explicit data-fidelity penalty and a CNN prior. PIRATE pre-trains a CNN denoiser on the registration field and "plugs" it into an iterative method as a regularizer. We additionally present PIRATE+ that fine-tunes the CNN prior in PIRATE using deep equilibrium models (DEQ). PIRATE+ interprets the fixed-point iteration of PIRATE as a network with effectively infinite layers and then trains the resulting network end-to-end, enabling it to learn more task-specific information and boosting its performance. Our numerical results on OASIS and CANDI datasets show that our methods achieve state-of-the-art performance on DIR.more » « less
-
Image registration is an essential task in medical image analysis. We propose two novel unsupervised diffeomorphic image registration networks, which use deep Residual Networks (ResNets) as numerical approximations of the underlying continuous diffeomorphic setting governed by ordinary differential equations (ODEs), viewed as a Eulerian discretization scheme. While considering the ODE-based parameterizations of diffeomorphisms, we consider both stationary and non-stationary (time varying) velocity fields as the driving velocities to solve the ODEs, which give rise to our two proposed architectures for diffeomorphic registration. We also employ Lipschitz-continuity on the Residual Networks in both architectures to define the admissible Hilbert space of velocity fields as a Reproducing Kernel Hilbert Spaces (RKHS) and regularize the smoothness of the velocity fields. We apply both registration networks to align and segment the OASIS brain MRI dataset. Experimental results demonstrate that our models are computational efficient and achieve comparable registration results with a smoother deformation field.more » « less
-
Multi-atlas segmentation (MAS) is a popular image segmentation technique for medical images. In this work, we improve the performance of MAS by correcting registration errors before label fusion. Specifically, we use a volumetric displacement field to refine registrations based on image anatomical appearance and predicted labels. We show the influence of the initial spatial alignment as well as the beneficial effect of using label information for MAS performance. Experiments demonstrate that the proposed refinement approach improves MAS performance on a 3D magnetic resonance dataset of the knee.more » « less
-
Combining a hyperspectral (HS) image and a multi-spectral (MS) image---an example of image fusion---can result in a spatially and spectrally high-resolution image. Despite the plethora of fusion algorithms in remote sensing, a necessary prerequisite, namely registration, is mostly ignored. This limits their application to well-registered images from the same source. In this article, we propose and validate an integrated registration and fusion approach (code available at https://github.com/zhouyuanzxcv/Hyperspectral). The registration algorithm minimizes a least-squares (LSQ) objective function with the point spread function (PSF) incorporated together with a nonrigid freeform transformation applied to the HS image and a rigid transformation applied to the MS image. It can handle images with significant scale differences and spatial distortion. The fusion algorithm takes the full high-resolution HS image as an unknown in the objective function. Assuming that the pixels lie on a low-dimensional manifold invariant to local linear transformations from spectral degradation, the fusion optimization problem leads to a closed-form solution. The method was validated on the Pavia University, Salton Sea, and the Mississippi Gulfport datasets. When the proposed registration algorithm is compared to its rigid variant and two mutual information-based methods, it has the best accuracy for both the nonrigid simulated dataset and the real dataset, with an average error less than 0.15 pixels for nonrigid distortion of maximum 1 HS pixel. When the fusion algorithm is compared with current state-of-the-art algorithms, it has the best performance on images with registration errors as well as on simulations that do not consider registration effects.more » « less
An official website of the United States government

