skip to main content


Title: Transient rhyolite melt extraction to produce a shallow granitic pluton
Rhyolitic melt that fuels explosive eruptions often originates in the upper crust via extraction from crystal-rich sources, implying an evolutionary link between volcanism and residual plutonism. However, the time scales over which these systems evolve are mainly understood through erupted deposits, limiting confirmation of this connection. Exhumed plutons that preserve a record of high-silica melt segregation provide a critical subvolcanic perspective on rhyolite generation, permitting comparison between time scales of long-term assembly and transient melt extraction events. Here, U-Pb zircon petrochronology and 40 Ar/ 39 Ar thermochronology constrain silicic melt segregation and residual cumulate formation in a ~7 to 6 Ma, shallow (3 to 7 km depth) Andean pluton. Thermo-petrological simulations linked to a zircon saturation model map spatiotemporal melt flux distributions. Our findings suggest that ~50 km 3 of rhyolitic melt was extracted in ~130 ka, transient pluton assembly that indicates the thermal viability of advanced magma differentiation in the upper crust.  more » « less
Award ID(s):
1940994
NSF-PAR ID:
10315037
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
21
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigated the interplay between deformation and pluton emplacement with the goal of providing insights into the role of transpression and arc magmatism in forming and modifying continental arc crust. We present 39 new laser-ablation–split-stream–inductively coupled plasma–mass spectrometry (LASS-ICP-MS) and secondary ion mass spectrometry (SIMS) 206Pb/238U zircon and titanite dates, together with titanite geochemistry and temperatures from the lower and middle crust of the Mesozoic Median Batholith, New Zealand, to (1) constrain the timing of Cretaceous arc magmatism in the Separation Point Suite, (2) document the timing of titanite growth in low- and high-strain deformational fabrics, and (3) link spatial and temporal patterns of lithospheric-scale transpressional shear zone development to the Cretaceous arc flare-up event. Our zircon results reveal that Separation Point Suite plutonism lasted from ca. 129 Ma to ca. 110 Ma in the middle crust of eastern and central Fiordland. Deformation during this time was focused into a 20-km-wide, arc-parallel zone of deformation that includes previously unreported segments of a complex shear zone that we term the Grebe shear zone. Early deformation in the Grebe shear zone involved development of low-strain fabrics with shallowly plunging mineral stretching lineations from ca. 129 to 125 Ma. Titanites in these rocks are euhedral, are generally aligned with weak subsolidus fabrics, and give rock-average temperatures ranging from 675 °C to 700 °C. We interpret them as relict magmatic titanites that grew prior to low-strain fabric development. In contrast, deformation from ca. 125 to 116 Ma involved movement along subvertical, mylonitic shear zones with moderately to steeply plunging mineral stretching lineations. Titanites in these shear zones are anhedral grains/aggregates that are aligned within mylonitic fabrics and have rock-average temperatures ranging from ∼610 °C to 700 °C. These titanites are most consistent with (re)crystallization in response to deformation and/or metamorphic reactions during amphibolite-facies metamorphism. At the orogen scale, spatial and temporal patterns indicate that the Separation Point Suite flare-up commenced during low-strain deformation in the middle crust (ca. 129–125 Ma) and peaked during high-strain, transpressional deformation (ca. 125–116 Ma), during which time the magmatic arc axis widened to 70 km or more. We suggest that transpressional deformation during the arc flare-up event was an important process in linking melt storage regions and controlling the distribution and geometry of plutons at mid-crustal levels. 
    more » « less
  2. Abstract We present >500 zircon δ18O and Lu-Hf isotope analyses on previously dated zircons to explore the interplay between spatial and temporal magmatic signals in Zealandia Cordillera. Our data cover ~8500 km2 of middle and lower crust in the Median Batholith (Fiordland segment of Zealandia Cordillera) where Mesozoic arc magmatism along the paleo-Pacific margin of Gondwana was focused along an ~100 km wide, arc-parallel zone. Our data reveal three spatially distinct isotope domains that we term the eastern, central, and western isotope domains. These domains parallel the Mesozoic arc-axis, and their boundaries are defined by major crustal-scale faults that were reactivated as ductile shear zones during the Early Cretaceous. The western isotope domain has homogenous, mantle-like δ 18O (Zrn) values of 5.8 ± 0.3‰ (2 St.dev.) and initial εHf (Zrn) values of +4.2 ± 1.0 (2 St.dev.). The eastern isotope domain is defined by isotopically low and homogenous δ18O (Zrn) values of 3.9 ± 0.2‰ and initial εHf values of +7.8 ± 0.6. The central isotope domain is characterized by transitional isotope values that display a strong E-W gradient with δ18O (Zrn) values rising from 4.6 to 5.9‰ and initial εHf values decreasing from +5.5 to +3.7. We find that the isotope architecture of the Median Batholith was in place before the initiation of Mesozoic arc magmatism and pre-dates Early Cretaceous contractional deformation and transpression. Our data show that Mesozoic pluton chemistry was controlled in part by long-lived, spatially distinct isotope domains that extend from the crust through to the upper mantle. Isotope differences between these domains are the result of the crustal architecture (an underthrusted low-δ18O source terrane) and a transient event beginning at ca. 129 Ma that primarily involved a depleted-mantle component contaminated by recycled trench sediments (10–20%). When data showing the temporal and spatial patterns of magmatism are integrated, we observe a pattern of decreasing crustal recycling of the low-δ18O source over time, which ultimately culminated in a mantle-controlled flare-up. Our data demonstrate that spatial and temporal signals are intimately linked, and when evaluated together they provide important insights into the crustal architecture and the role of both stable and transient arc magmatic trends in Cordilleran batholiths. 
    more » « less
  3. Abstract

    The Laguna del Maule (LdM) volcanic field comprises the greatest concentration of postglacial rhyolite in the Andes and includes the products of ~40 km3of explosive and effusive eruptions. Recent observations at LdM by interferometric synthetic aperture radar and global navigation satellite system geodesy have revealed inflation at rates exceeding 20 cm/year since 2007, capturing an ongoing period of growth of a potentially large upper crustal magma reservoir. Moreover, magnetotelluric and gravity studies indicate the presence of fluids and/or partial melt in the upper crust near the center of inflation. Petrologic observations imply repeated, rapid extraction of rhyolitic melt from crystal mush stored at depths of 4–6 km during at least the past 26 ka. We utilize multiple types of surface‐wave observations to constrain the location and geometry of low‐velocity domains beneath LdM. We present a three‐dimensional shear‐wave velocity model that delineates a ~450‐km3shallow magma reservoir ~2 to 8 km below surface with an average melt fraction of ~5%. Interpretation of the seismic tomography in light of existing gravity, magnetotelluric, and geodetic observations supports this model and reveals variations in melt content and a deeper magma system feeding the shallow reservoir in greater detail than any of the geophysical methods alone. Geophysical imaging of the LdM magma system today is consistent with the petrologic inferences of the reservoir structure and growth during the past 20–60 kyr. Taken together with the ongoing unrest, a future rhyolite eruption of at least the scale of those common during the Holocene is a reasonable possibility.

     
    more » « less
  4. Abstract Plutons offer an opportunity to study the extended history of magmas at depth. Fully exploiting this record requires the ability to track changes in magmatic plumbing systems as magma intrudes, crystallizes, and/or mixes through time. This task has been difficult in granitoid plutons because of low sampling density, poorly preserved or cryptic intrusive relationships, and the difficulty of identifying plutonic volumes that record the contemporaneous presence of melt. In particular, the difficulty in delineating fossil magma reservoirs has limited our ability to directly test whether or not high-SiO2 rhyolite is the result of crystal-melt segregation. We present new high-precision U-Pb zircon geochronologic and geochemical data that characterize the Miocene Searchlight pluton in southern Nevada, USA. The data indicate that the pluton was built incrementally over ~1.5 m.y. with some volumes of magma completely crystallizing before subsequent volumes arrived. The largest increment is an ~2.7-km-thick granitic sill that records contemporaneous zircon crystallization, which we interpret to represent a fossil silicic magma reservoir within the greater Searchlight pluton. Whole-rock geochemical data demonstrate that this unit is stratified relative to paleo-vertical, consistent with gravitationally driven separation of high-SiO2 melt from early-formed crystals at moderate crystallinity. Zircon trace-element compositions suggest that our geochronologic data from this unit record most of the relevant crystallization interval for differentiation and that this process occurred in <150 k.y. 
    more » « less
  5. ABSTRACT 18 Successive caldera-forming eruptions from ~30-25 Ma generated a large nested 19 caldera complex in western Nevada that was subsequently dissected by Basin and Range 20 extension, providing extraordinary cross-sectional views through a diverse range of 21 eruptive and intrusive products. A high-resolution oxygen isotopic study was conducted 22 on units that represent all major parts of the Job Canyon, Poco Canyon, Elevenmile 23 Canyon, and Louderback Mountains caldera cycles (29.2-25.1 Ma), and several 24 Cretaceous basement plutons that flank the Stillwater caldera complex. We also provide 2 25 new oxygen and strontium isotope data for regional caldera centers in the Great Basin, 26 which are synthesized with published oxygen and strontium isotope data for regional 27 Mesozoic basement rocks. Stillwater zircons span a large isotopic range (d18Ozircon of 3.6 28 to 8.2‰), and all caldera cycles possess low-d18O zircons. In some cases, they are a small 29 proportion of the total populations, and in others they dominate, such as in the low-d18O 30 rhyolitic tuffs of Job Canyon and Poco Canyon (d18Ozircon=4.0-4.3‰ and calculated d18O 31 magma=5.5-6‰). These are the first low-d18O rhyolites documented in middle Cenozoic 32 calderas of the Great Basin, adding to the global occurrence of these important magma 33 types that fingerprint recycling of shallow crust altered by low-d18O meteoric waters. The 34 appearance of low-d18O rhyolites in the Stillwater caldera complex is overprinted on a 35 Great Basin-wide trend of miogeoclinal sediment contribution to silicic magmas that 36 elevates d18O compositions, making identification of 18O depletions difficult. Oxygen and 37 strontium isotopic data and U-Pb zircon age inheritance points to derivation of the low38 d18O tuff of Job Canyon from melting and assimilation of hydrothermally altered 39 Cretaceous granitic basement. In contrast, oxygen and strontium isotopic modeling points 40 to derivation of the low-d18O tuff of Poco Canyon from melting and assimilation of 41 hydrothermally altered intracaldera Job Canyon rocks. Though not a nominally low-d18O 42 rhyolite, the tuff of Elevenmile Canyon possesses both low-d18O and high-d18O zircon 43 cores that are overgrown by homogenized zircon rims that approximate the bulk zircon 44 average, pointing to batch assembly of isotopically diverse upper crustal melts to 45 generate one of the most voluminous (2,500-5,000 km3) tuff eruptions in the Great Basin. 46 Low-d18O zircons in the tuff of Elevenmile Canyon are inherited from the Poco Canyon 47 cycle based on their unique trace and rare earth element chemistry. The tuffs of Poco and 3 48 Elevenmile Canyon both support a caldera cannibalization model in which 49 hydrothermally altered extrusive and intrusive rocks from previous caldera cycles are 50 recycled into later magmas. Though overlapping in space and time, each caldera-forming 51 cycle of the Stillwater complex had a unique oxygen isotope record as retained in single 52 zircons. Even plutons that were spatially and temporally coincident with calderas diverge 53 from the caldera-forming tuffs and cannot be their cogenetic remnants in most cases. 
    more » « less