skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fairness Through Robustness: Investigating Robustness Disparity in Deep Learning
Deep neural networks (DNNs) are increasingly used in real-world applications (e.g. facial recognition). This has resulted in concerns about the fairness of decisions made by these models. Various notions and measures of fairness have been proposed to ensure that a decision-making system does not disproportionately harm (or benefit) particular subgroups of the population. In this paper, we argue that traditional notions of fairness that are only based on models' outputs are not sufficient when the model is vulnerable to adversarial attacks. We argue that in some cases, it may be easier for an attacker to target a particular subgroup, resulting in a form of robustness bias. We show that measuring robustness bias is a challenging task for DNNs and propose two methods to measure this form of bias. We then conduct an empirical study on state-of-the-art neural networks on commonly used real-world datasets such as CIFAR-10, CIFAR-100, Adience, and UTKFace and show that in almost all cases there are subgroups (in some cases based on sensitive attributes like race, gender, etc) which are less robust and are thus at a disadvantage. We argue that this kind of bias arises due to both the data distribution and the highly complex nature of the learned decision boundary in the case of DNNs, thus making mitigation of such biases a non-trivial task. Our results show that robustness bias is an important criterion to consider while auditing real-world systems that rely on DNNs for decision making. Code to reproduce all our results can be found here: https://github.com/nvedant07/Fairness-Through-Robustness  more » « less
Award ID(s):
1846237 1852352
PAR ID:
10315227
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNNs) have demonstrated remarkable capabilities across various domains. Despite the successes of GNN deployment, their utilization often reflects societal biases, which critically hinder their adoption in high-stake decision-making scenarios such as online clinical diagnosis, financial crediting, etc. Numerous efforts have been made to develop fair GNNs but they typically concentrate on either individual or group fairness, overlooking the intricate interplay between the two, resulting in the enhancement of one, usually at the cost of the other. In addition, existing individual fairness approaches using a ranking perspective fail to identify discrimination in the ranking. This paper introduces two innovative notions dealing with individual graph fairness and group-aware individual graph fairness, aiming to more accurately measure individual and group biases. Our Group Equality Individual Fairness (GEIF) framework is designed to achieve individual fairness while equalizing the level of individual fairness among subgroups. Preliminary experiments on several real-world graph datasets demonstrate that GEIF outperforms state-of-the-art methods by a significant margin in terms of individual fairness, group fairness, and utility performance. 
    more » « less
  2. Graph Neural Networks (GNNs) have shown satisfying performance in various graph analytical problems. Hence, they have become the de facto solution in a variety of decision-making scenarios. However, GNNs could yield biased results against certain demographic subgroups. Some recent works have empirically shown that the biased structure of the input network is a significant source of bias for GNNs. Nevertheless, no studies have systematically scrutinized which part of the input network structure leads to biased predictions for any given node. The low transparency on how the structure of the input network influences the bias in GNN outcome largely limits the safe adoption of GNNs in various decision-critical scenarios. In this paper, we study a novel research problem of structural explanation of bias in GNNs. Specifically, we propose a novel post-hoc explanation framework to identify two edge sets that can maximally account for the exhibited bias and maximally contribute to the fairness level of the GNN prediction for any given node, respectively. Such explanations not only provide a comprehensive understanding of bias/fairness of GNN predictions but also have practical significance in building an effective yet fair GNN model. Extensive experiments on real-world datasets validate the effectiveness of the proposed framework towards delivering effective structural explanations for the bias of GNNs. Open-source code can be found at https://github.com/yushundong/REFEREE. 
    more » « less
  3. This project explores adversarial training techniques to develop fairer Deep Neural Networks (DNNs) to mitigate the inherent bias they are known to exhibit. DNNs are susceptible to inheriting bias with respect to sensitive attributes such as race and gender, which can lead to life-altering outcomes (e.g., demographic bias in facial recognition software used to arrest a suspect). We propose a robust optimization problem, which we demonstrate can improve fairness in several datasets, both synthetic and real-world, using an affine linear model. Leveraging second order information, we are able to find a solution to our optimization problem more efficiently than with a purely first order method. 
    more » « less
  4. Abstract We present a novel deep neural network (DNN) training scheme and resistive RAM (RRAM) in-memory computing (IMC) hardware evaluation towards achieving high accuracy against RRAM device/array variations and enhanced robustness against adversarial input attacks. We present improved IMC inference accuracy results evaluated on state-of-the-art DNNs including ResNet-18, AlexNet, and VGG with binary, 2-bit, and 4-bit activation/weight precision for the CIFAR-10 dataset. These DNNs are evaluated with measured noise data obtained from three different RRAM-based IMC prototype chips. Across these various DNNs and IMC chip measurements, we show that our proposed hardware noise-aware DNN training consistently improves DNN inference accuracy for actual IMC hardware, up to 8% accuracy improvement for the CIFAR-10 dataset. We also analyze the impact of our proposed noise injection scheme on the adversarial robustness of ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight precision. Our results show up to 6% improvement in the robustness to black-box adversarial input attacks. 
    more » « less
  5. Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic vectors that cause deep neural networks (DNNs) to misclassify inputs with high probability. In practical attack scenarios, adversarial perturbations may undergo transformations such as changes in pixel intensity, scaling, etc. before being added to DNN inputs. Existing methods do not create UAPs robust to these real-world transformations, thereby limiting their applicability in practical attack scenarios. In this work, we introduce and formulate UAPs robust against real-world transformations. We build an iterative algorithm using probabilistic robustness bounds and construct such UAPs robust to transformations generated by composing arbitrary sub-differentiable transformation functions. We perform an extensive evaluation on the popular CIFAR-10 and ILSVRC 2012 datasets measuring our UAPs' robustness under a wide range common, real-world transformations such as rotation, contrast changes, etc. We further show that by using a set of primitive transformations our method can generalize well to unseen transformations such as fog, JPEG compression, etc. Our results show that our method can generate UAPs up to 23% more robust than state-of-the-art baselines. 
    more » « less