skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: r-Process Radioisotopes from Near-Earth Supernovae and Kilonovae
Abstract The astrophysical sites where r -process elements are synthesized remain mysterious: it is clear that neutron star mergers (kilonovae (KNe)) contribute, and some classes of core-collapse supernovae (SNe) are also possible sources of at least the lighter r -process species. The discovery of 60 Fe on the Earth and Moon implies that one or more astrophysical explosions have occurred near the Earth within the last few million years, probably SNe. Intriguingly, 244 Pu has now been detected, mostly overlapping with 60 Fe pulses. However, the 244 Pu flux may extend to before 12 Myr ago, pointing to a different origin. Motivated by these observations and difficulties for r -process nucleosynthesis in SN models, we propose that ejecta from a KN enriched the giant molecular cloud that gave rise to the Local Bubble, where the Sun resides. Accelerator mass spectrometry (AMS) measurements of 244 Pu and searches for other live isotopes could probe the origins of the r -process and the history of the solar neighborhood, including triggers for mass extinctions, e.g., that at the end of the Devonian epoch, motivating the calculations of the abundances of live r -process radioisotopes produced in SNe and KNe that we present here. Given the presence of 244 Pu, other r -process species such as 93 Zr, 107 Pd, 129 I, 135 Cs, 182 Hf, 236 U, 237 Np, and 247 Cm should be present. Their abundances and well-resolved time histories could distinguish between the SN and KN scenarios, and we discuss prospects for their detection in deep-ocean deposits and the lunar regolith. We show that AMS 129 I measurements in Fe–Mn crusts already constrain a possible nearby KN scenario.  more » « less
Award ID(s):
2011890 2108589
PAR ID:
10315292
Author(s) / Creator(s):
 ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 244Pu has recently been discovered in deep-sea deposits spanning the past 10 Myr, a period that includes two60Fe pulses from nearby supernovae.244Pu is among the heaviestr-process products, and we consider whether it was created in supernovae, which is disfavored by nucleosynthesis simulations, or in an earlier kilonova event that seeded the nearby interstellar medium with244Pu that was subsequently swept up by the supernova debris. We discuss how these possibilities can be probed by measuring244Pu and otherr-process radioisotopes such as129I and182Hf, both in lunar regolith samples returned to Earth by missions such as Chang’e and Artemis, and in deep-sea deposits. 
    more » « less
  2. Live (not decayed) radioisotopes on the Earth and Moon are messengers from recent nearby astrophysical explosions. Measurements of60Fe in deep-sea samples, Antarctic snow, and lunar regolith reveal two pulses about 3 Myr and 7 Myr ago. Detection of244Pu in a deep-sea crust indicates a recent r-process event. We review the ultrasensitive accelerator mass spectrometry techniques that enable these findings. We then explore the implications for astrophysics, including supernova nucleosynthesis, particularly the r-process, as well as supernova dust production and the formation of the Local Bubble that envelops the Solar System. The implications go beyond nuclear physics and astrophysics to include studies of heliophysics, astrobiology, geology, and evolutionary biology. 
    more » « less
  3. Abstract While modeling the galactic chemical evolution (GCE) of stable elements provides insights to the formation history of the Galaxy and the relative contributions of nucleosynthesis sites, modeling the evolution of short-lived radioisotopes (SLRs) can provide supplementary timing information on recent nucleosynthesis. To study the evolution of SLRs, we need to understand their spatial distribution. Using a three-dimensional GCE model, we investigated the evolution of four SLRs:53Mn,60Fe,182Hf, and244Pu with the aim of explaining detections of recent (within the last ≈1–20 Myr) deposition of live53Mn,60Fe, and244Pu of extrasolar origin into deep-sea reservoirs. We find that core-collapse supernovae are the dominant propagation mechanism of SLRs in the Galaxy. This results in the simultaneous arrival of these four SLRs on Earth, although they could have been produced in different astrophysical sites, which can explain why live extrasolar53Mn,60Fe, and244Pu are found within the same, or similar, layers of deep-sea sediments. We predict that182Hf should also be found in such sediments at similar depths. 
    more » « less
  4. ABSTRACT We run a three‐dimensional Galactic chemical evolution (GCE) model to follow the propagation of53Mn (exclusively produced from type Ia supernovae, SNIa),60Fe (exclusively produced from core‐collapse supernovae, CCSNe),182Hf (exclusively produced from intermediate mass stars, IMSs), and244Pu (exclusively produced from neutron star mergers, NSMs). By comparing the predictions from our three‐dimensional GCE model to recent detections of53Mn,60Fe, and244Pu on the deep‐sea floor, we draw conclusions about their propagation in the interstellar medium. 
    more » « less
  5. Abstract Neutron star (NS) mergers are currently the only observed source ofr-process production in the Universe. Yet, it is unclear how muchr-process mass from these mergers is incorporated into star-forming gas to enrich stars. This is crucial to consider as all otherr-process mass estimates in the Universe beyond Earth are based on stellarr-process abundances. Here, we explore the extent to which merger location and host-galaxy properties affect the incorporation ofr-process elements into star-forming gas, and quantify an “enrichment” timescale to account for this process. To put this timescale in context, we analyze a population of 12 gamma-ray bursts (GRBs) with probable associations tor-process kilonovae (GRB-KNe) and 74 short GRBs without claimed KNe, including new nonparametric star formation histories for the GRB-KN hosts. We find the enrichment timescales for this sample are between ​​​​​​≈7 Myr and 1.6 Gyr, suggesting that environmental enrichment is delayed from NS merger occurrence. Moreover, we find a correlation between the amount of environmental enrichment from a single event and increasing host specific star formation rate (sSFR), and little correlation with stellar mass and GRB galactocentric offset. Environments with low sSFRs (<10−10.5yr−1), which comprise 18% of short-GRB hosts and the host of GW170817, will have little to no capacity for stellar enrichment. Our results indicate that not allr-process from NS mergers is incorporated into newly forming stars, and instead some remains “lost” to the circumgalactic medium or intergalactic medium. Future studies should consider these losses to understand the total contribution from NS mergers to the Universe’sr-process budget. 
    more » « less