skip to main content


Title: Single-Entity Electrocatalysis at Electrode Ensembles Prepared by Template Synthesis
Nanoelectrode ensembles (NEEs), prepared by Au template synthesis, are presented as a proof-of-concept sample platform to study individual electrodeposited materials by scanning electrochemical cell microscopy (SECCM). With this platform, the non-conductive membrane support does not contribute to the electrocatalytic activity recorded at each electrode. Use of low-density template membranes results in electrodes that are isolated because initial membrane pores are typically separated by significant (microscale) distances. Electrodeposition of catalytic nanoparticles onto the electrodes of the array and observation of electrocatalytic activity are demonstrated to be suitable for correlative SECCM voltammetric mapping and electron microscopy. Suitability of NEEs for studies of surface Au oxidation, hydrazine oxidation, and hydrogen evolution (hydrogen evolution reaction, HER), and at Pt particles on NEEs (Pt-NEEs) for HER is demonstrated.  more » « less
Award ID(s):
1808133
PAR ID:
10315404
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
168
Issue:
12
ISSN:
0013-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bimetallic heterostructures, including core–shell and Janus configurations, often offer unique electrocatalytic properties compared to monometallic nanoparticles. However, achieving precise control over both elemental composition and spatial arrangement within these structures remains a challenge. Here, an electrosynthesis method is introduced that enables the fabrication of heterostructured bimetallic nanoparticles with precise, independent control of their elemental distribution. By leveraging dual‐channel scanning electrochemical cell microscopy (SECCM), the local ionic environment is dynamically modulated in situ, adjusting the deposition bias between channels to achieve selective electrodeposition. This approach allows temporal control over the solution conditions within the SECCM droplet, facilitating the synthesis of multi‐layer core–shell nanoparticles with tunable thickness, number, and sequence of layers. This technique is demonstrated with Pt–Cu and Pt–Ni systems, synthesizing arrays of Cu@Pt and Pt@Cu core–shell structures, which are then screened for catalytic activity in hydrogen evolution (HER) and oxygen reduction (ORR) reactions. The high spatial resolution and on‐demand control over the composition and structure make this method well‐suitable for creating arrays of complex, multi‐metallic heterostructures, which is expected to accelerate the discovery of advanced electrocatalytic materials, offering a platform for efficient and scalable electrocatalyst screening.

     
    more » « less
  2. Abstract

    The electrocatalytic hydrogen evolution reaction (HER) is one of the most studied and promising processes for hydrogen fuel generation. Single-atom catalysts have been shown to exhibit ultra-high HER catalytic activity, but the harsh preparation conditions and the low single-atom loading hinder their practical applications. Furthermore, promoting hydrogen evolution reaction kinetics, especially in alkaline electrolytes, remains as an important challenge. Herein, Pt/C60catalysts with high-loading, high-dispersion single-atomic platinum anchored on C60are achieved through a room-temperature synthetic strategy. Pt/C60-2 exhibits high HER catalytic performance with a low overpotential (η10) of 25 mV at 10 mA cm−2. Density functional theory calculations reveal that the Pt-C60polymeric structures in Pt/C60-2 favors water adsorption, and the shell-like charge redistribution around the Pt-bonding region induced by the curved surfaces of two adjacent C60facilitates the desorption of hydrogen, thus favoring fast reaction kinetics for hydrogen evolution.

     
    more » « less
  3. Molybdenum sulfide (MoS2) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER) owing to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the number of active sites in MoS2. In this work, a simple method of fabricating polycrystalline multilayer MoS2on Mo foil for efficient hydrogen evolution is demonstrated by controlling the sulfur (S) vacancy concentration, which can introduce new bands and lower the hydrogen adsorption free energy (ΔGH). For the first time, theoretical and experimental results show that the HER performance of synthesized MoS2with S vacancy can be further enhanced by the very small amount of platinum (Pt) decoration, which can introduce new gap states and more catalytic sites in real space with suitable free energy. The fabricated hybrid electrocatalyst exhibits significantly smaller Tafel slope of 38 mV dec−1and better HER electrocatalytic activity compared to previous works. This approach provides a simple pathway to design low‐cost, efficient and sizable hydrogen‐evolving electrode by simultaneously tuning the MoS2band structure and active sites.

     
    more » « less
  4. Abstract

    A hybrid biofuel cell (HBFC) is explored as a low-cost alternative to abiotic and enzymatic biofuel cells. Here the HBFC provides an enzymeless approach for the fabrication of the anodic electrode while employing an enzymatic approach for the fabrication of the cathodic electrode to develop energy harvesting platform to power bioelectronic devices. The anode employed 250 μm braided gold wire modified with colloidal platinum (Au-co-Pt) and bilirubin oxidase (BODx) modified gold coated Buckypaper (BP-Au-BODx) cathode. The functionalization of the gold coated multi-walled carbon nanotube (MWCNT) structures of the BP electrodes is achieved by 3-mercaptopropionic acid surface modification to possess negatively charged carboxylic groups and subsequently followed by EDC/Sulfo-NHS (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysulfosuccinimide) crosslinking with BODx. The integration of the BODx and gold coated MWCNTs is evaluated for bioelectrocatalytic activity. The Au-co-Pt and BP-Au-BODx exhibited excellent electrocatalytic activity towards glucose oxidation with a linear dynamic range up to 20 mM glucose and molecular oxygen reduction, respectively. The HBFC demonstrated excellent performance with the largest open circuit voltages of 0.735 V and power density of 46.31 μW/cm2in 3 mM glucose. In addition, the HBFC operating on 3 mM glucose exhibited excellent uninterrupted operational stability while continuously powering a small electronic device. These results provide great opportunities for implementing this simple but efficient HBFC to harvest the biochemical energy of target fuel(s) in diverse medical and environmental applications.

     
    more » « less
  5. Sustainable hydrogen gas production is critical for future fuel infrastructure. Here, a series of phosphorous-doped carbon nitride materials were synthesized by thermal annealing of urea and ammonium hexafluorophosphate, and platinum was atomically dispersed within the structural scaffold by thermal refluxing with Zeise's salt forming Pt–N/P/Cl coordination interactions, as manifested in X-ray photoelectron and absorption spectroscopic measurements. The resulting materials were found to exhibit markedly enhanced electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media, as compared to the P-free counterpart. This was accounted for by P doping that led to a significantly improved charge carrier density within C 3 N 4 , and the sample with the optimal P content showed an overpotential of only −22 mV to reach the current density of 10 mA cm −2 , lower than that of commercial Pt/C (−26 mV), and a mass activity (7.1 mA μg−1Pt at −70 mV vs. reversible hydrogen electrode) nearly triple that of the latter. Results from the present study highlight the significance of P doping in the manipulation of the electronic structures of metal/carbon nitride nanocomposites for high-performance HER electrocatalysis. 
    more » « less