skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking
The Lyapunov exponent (LyE) is a trending measure for characterizing gait stability. Previous studies have shown that data length has an effect on the resultant LyE, but the origin of why it changes is unknown. This study investigates if data length affects the choice of time delay and embedding dimension when reconstructing the phase space, which is a requirement for calculating the LyE. The effect of three different preprocessing methods on reconstructing the gait attractor was also investigated. Lumbar accelerometer data were collected from 10 healthy subjects walking on a treadmill at their preferred walking speed for 30 min. Our results show that time delay was not sensitive to the amount of data used during calculation. However, the embedding dimension had a minimum data requirement of 200 or 300 gait cycles, depending on the preprocessing method used, to determine the steady-state value of the embedding dimension. This study also found that preprocessing the data using a fixed number of strides or a fixed number of data points had significantly different values for time delay compared to a time series that used a fixed number of normalized gait cycles, which have a fixed number of data points per stride. Thus, comparing LyE values should match the method of calculation using either a fixed number of strides or a fixed number of data points.  more » « less
Award ID(s):
1650566
PAR ID:
10315420
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
17
Issue:
168
ISSN:
1742-5689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Falls are the leading cause of disability in older adults with a third of adults over the age of 65 falling every year. Quantitative fall risk assessments using inertial measurement units and local dynamics stability (LDS) have shown that it is possible to identify at-risk persons. However, there are inconsistencies in the literature on how to calculate LDS and how much data is required for a reliable result. This study investigates the reliability and minimum required strides for 6 algorithm-normalization method combinations when computing LDS using young healthy and community dwelling elderly individuals. Participants wore an accelerometer at the lower lumbar while they walked for three minutes up and down a long hallway. This study concluded that the Rosenstein et al. algorithm was successfully and reliably able to differentiate between both populations using only 50 strides. It was also found normalizing the gait time series data by either truncating the data using a fixed number of strides or using a fixed number of strides and normalizing the entire time series to a fixed number of data points performed better when using the Rosenstein et al. algorithm. 
    more » « less
  2. Humans can freely adopt gait parameters like walking speed, step length, or cadence on the fly when walking. Planned movement that can be updated online to account for changes in the environment rather than having to rely on habitual, reflexive control that is adapted over long timescales. Here we present a neuromechanical model that accounts for this flexibility by combining movement goals and motor plans on a kinematic task level with low-level spinal feedback loops. We show that the model can walk at a wide range of different gait patterns by choosing a small number of high-level control parameters representing a movement goal. A larger number of parameters governing the low-level reflex loops in the spinal cord, on the other hand, remain fixed. We also show that the model can generalize the learned behavior by recombining the high-level control parameters and walk with gait patterns that it had not encountered before. Furthermore, the model can transition between different gaits without the loss of balance by switching to a new set of control parameters in real time. 
    more » « less
  3. Quantitative analysis of human gait is critical for the early discovery, progressive tracking, and rehabilitation of neurological and musculoskeletal disorders, such as Parkinson’s disease, stroke, and cerebral palsy. Gait analysis typically involves estimating gait characteristics, such as spatiotemporal gait parameters and gait health indicators (e.g., step time, length, symmetry, and balance). Traditional methods of gait analysis involve the use of cameras, wearables, and force plates but are limited in operational requirements when applied in daily life, such as direct line-of-sight, carrying devices, and dense deployment. This paper introduces a novel approach for gait analysis by passively sensing floor vibrations generated by human footsteps using vibration sensors mounted on the floor surface. Our approach is low-cost, non-intrusive, and perceived as privacy-friendly, making it suitable for continuous gait health monitoring in daily life. Our algorithm estimates various gait parameters that are used as standard metrics in medical practices, including temporal parameters (step time, stride time, stance time, swing time, double-support time, and single-support time), spatial parameters (step length, width, angle, and stride length), and extracts gait health indicators (cadence/walking speed, left–right symmetry, gait balance, and initial contact types). The main challenge we addressed in this paper is the effect of different floor types on the resultant vibrations. We develop floor-adaptive algorithms to extract features that are generalizable to various practical settings, including homes, hospitals, and eldercare facilities. We evaluate our approach through real-world walking experiments with 20 adults with 12,231 labeled gait cycles across concrete and wooden floors. Our results show 90.5% (RMSE 0.08s), 71.3% (RMSE 0.38m), and 92.3% (RMSPE 7.7%) accuracy in estimating temporal, spatial parameters, and gait health indicators, respectively. 
    more » « less
  4. Step length is a critical gait parameter that allows a quantitative assessment of gait asymmetry. Gait asymmetry can lead to many potential health threats such as joint degeneration, difficult balance control, and gait inefficiency. Therefore, accurate step length estimation is essential to understand gait asymmetry and provide appropriate clinical interventions or gait training programs. The conventional method for step length measurement relies on using foot-mounted inertial measurement units (IMUs). However, this may not be suitable for real-world applications due to sensor signal drift and the potential obtrusiveness of using distal sensors. To overcome this challenge, we propose a deep convolutional neural network-based step length estimation using only proximal wearable sensors (hip goniometer, trunk IMU, and thigh IMU) capable of generalizing to various walking speeds. To evaluate this approach, we utilized treadmill data collected from sixteen able-bodied subjects at different walking speeds. We tested our optimized model on the overground walking data. Our CNN model estimated the step length with an average mean absolute error of 2.89 ± 0.89 cm across all subjects and walking speeds. Since wearable sensors and CNN models are easily deployable in real-time, our study findings can provide personalized real-time step length monitoring in wearable assistive devices and gait training programs. 
    more » « less
  5. Walking through immersive virtual environments is one of the important parts of Virtual Reality (VR) applications. Prior research has established that users’ gait in virtual and real environments differs; however, little research has evaluated how users’ gait differs as users gain more experience with VR. We conducted experiments measuring novice and experienced subjects’ gait parameters in VR and real environments. Results showed that subjects’ performance in VR and Real World was more similar in the last trials than in the first trials; their walking dissimilarity in the start trials diminished by walking more trials. We found trial as a significant variable affecting the walking speed, step length, and trunk angle for both groups of users. While the main effect of expertise was not observed, an interaction effect between expertise and the trial number was shown. Trunk angle increased over time for novices but decreased for experts. 
    more » « less