- Award ID(s):
- 1835000
- Publication Date:
- NSF-PAR ID:
- 10315568
- Journal Name:
- Nature Biomedical Engineering
- ISSN:
- 2157-846X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurements of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale ofmore »
-
Around the world and across taxa, subterranean mammals show remarkable convergent evolution in morphology (e.g. reduced external ears, small eyes, shortened limbs and tails). This is true of sensory systems as well (e.g. loss of object vision and high frequency hearing). The naked mole-rat (Heterocephalus glaber) displays these typical subterranean features, but also has unusual characteristics even among subterranean mammals. Naked mole-rats are cold-blooded, completely furless, very long-lived (> 30 years), and eusocial (like termites). They also live in large colonies, which is very unusual for subterraneans. Their cortical organization has reduced area for visual processing, utilizing 30% more cortex for tactile processing. They are extremely tolerant to oxygen deprivation, and can recover from 18 minutes of anoxia. Their pain pathway is reduced and they feel no pain from acidosis. They are the only rodent tested to date whose pheromone-detecting vomeronasal organ shows no postnatal growth. These features may be a result of this species' "extreme subterranean lifestyle" that combines living underground and living in large colonies. Many respiring animals cramped together in unventilated burrows elevates CO2 levels, high enough to cause acidosis pain, and depletes O2 concentrations low enough to kill other mammals. The naked mole-rat may be anmore »
-
OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain. Technological advances have led to renewed optimism in the field, but mechanisms of action in the brain remain poorly understood. We hypothesize that SCS outcomes will be associated with changes in neural oscillations. METHODS/STUDY POPULATION: The goal of our team project is to test patients who receive SCS at 3 times points: baseline, at day 7 during the trial period, and day 180 after a permanent system has been implanted. At each time point participants will complete 10 minutes of eyes closed, resting electroencephalography (EEG). EEG will be collected with the ActiveTwo system, a 128-electrode cap, and a 256 channel AD box from BioSemi. Traditional machine learning methods such as support vector machine and more complex models including deep learning will be used to generate interpretable features within resting EEG signals. RESULTS/ANTICIPATED RESULTS: Through machine learning, we anticipate that SCS will have a significant effect on resting alpha and beta power in sensorimotor cortex. DISCUSSION/SIGNIFICANCE OF IMPACT: This collaborative project will further the application of machine learning in cognitive neuroscience and allow us to better understand how therapies for chronic pain alter resting brain activity.
-
Abstract Background Efforts to understand genetic variability involved in an individual’s susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. Methods To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund’s adjuvant (CFA) in rats. Results Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequencesmore »
-
Abstract Objective . There has been growing interest in understanding multisensory integration in the cortex through activation of multiple sensory and motor pathways to treat brain disorders, such as tinnitus or essential tremors. For tinnitus, previous studies show that combined sound and body stimulation can modulate the auditory pathway and lead to significant improvements in tinnitus symptoms. Considering that tinnitus is a type of chronic auditory pain, bimodal stimulation could potentially alter activity in the somatosensory pathway relevant for treating chronic pain. As an initial step towards that goal, we mapped and characterized neuromodulation effects in the somatosensory cortex (SC) in response to sound and/or electrical stimulation of the body.Approach. We first mapped the topographic organization of activity across the SC of ketamine-anesthetized guinea pigs through electrical stimulation of different body locations using subcutaneous needle electrodes or with broadband acoustic stimulation. We then characterized how neural activity in different parts of the SC could be facilitated or suppressed with bimodal stimulation.Main results . The topography in the SC of guinea pigs in response to electrical stimulation of the body aligns consistently to that shown in previous rodent studies. Interestingly, auditory broadband noise stimulation primarily excited SC areas that typically respond to stimulation ofmore »