skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents
Pain relief on-demand Chronic pain is a debilitating condition for which there are no effective treatments. The primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) are involved in decoding pain components, and electrical stimulation of the prefrontal cortex (PFC) has been shown to exert analgesic effects. Here, Sun et al. developed a multiregion brain-machine interface (BMI) able to detect pain from electrical signals in S1 and ACC and provide on-demand PFC stimulation. The BMI was able to accurately detect and treat acute and chronic pain in rats; the analgesic effects were stable over time. The results suggest that BMI approaches might be effective for treating chronic pain of different etiologies.  more » « less
Award ID(s):
1835000
PAR ID:
10394674
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Translational Medicine
Volume:
14
Issue:
651
ISSN:
1946-6234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chronic pain is characterized by discrete pain episodes of unpredictable frequency and duration. This hinders the study of pain mechanisms and contributes to the use of pharmacological treatments associated with side effects, addiction and drug tolerance. Here, we show that a closed-loop brain–machine interface (BMI) can modulate sensory-affective experiences in real time in freely behaving rats by coupling neural codes for nociception directly with therapeutic cortical stimulation. The BMI decodes the onset of nociception via a state-space model on the basis of the analysis of online-sorted spikes recorded from the anterior cingulate cortex (which is critical for pain processing) and couples real-time pain detection with optogenetic activation of the prelimbic prefrontal cortex (which exerts top–down nociceptive regulation). In rats, the BMI effectively inhibited sensory and affective behaviours caused by acute mechanical or thermal pain, and by chronic inflammatory or neuropathic pain. The approach provides a blueprint for demand-based neuromodulation to treat sensory-affective disorders, and could be further leveraged for nociceptive control and to study pain mechanisms. 
    more » « less
  2. null (Ed.)
    Abstract Neuroimaging and transcranial direct current stimulation (tDCS) research has revealed that generating novel ideas is associated with both reductions and increases in prefrontal cortex (PFC) activity, and engagement of posterior occipital cortex, among other regions. However, there is substantial variability in the robustness of these tDCS‐induced effects due to heterogeneous sample sizes, different creativity measures, and methodological diversity in the application of tDCS across laboratories. To address these shortcomings, we used twelve different montages within a standardized tDCS protocol to investigate how altering activity in frontotemporal and occipital cortex impacts creative thinking. Across four experiments, 246 participants generated either the common or an uncommon use for 60 object pictures while undergoing tDCS. Participants also completed a control short-term memory task. We applied active tDCS for 20 min at 1.5 mA through two 5 cm × 5 cm electrodes over left or right ventrolateral prefrontal (areas F7, F8) or occipital (areas O1, O2) cortex, concurrent bilateral stimulation of these regions across polarities, or sham stimulation. Cathodal stimulation of the left, but not right, ventrolateral PFC improved fluency in creative idea generation, but had no effects on originality, as approximated by measures of semantic distance. No effects were obtained for the control tasks. Concurrent bilateral stimulation of the ventrolateral PFC regardless of polarity direction, and excitatory stimulation of occipital cortex did not alter task performance. Highlighting the importance of cross-experimental methodological consistency, these results extend our past findings and contribute to our understanding of the role of left PFC in creative thinking. 
    more » « less
  3. Prior expectations can bias how we perceive pain. Using a drift diffusion model, we recently showed that this influence is primarily based on changes in perceptual decision-making (indexed as shift in starting point). Only during unexpected application of high-intensity noxious stimuli, altered information processing (indexed as increase in drift rate) explained the expectancy effect on pain processing. Here, we employed functional magnetic resonance imaging to investigate the neural basis of both these processes in healthy volunteers. On each trial, visual cues induced the expectation of high- or low-intensity noxious stimulation or signaled equal probability for both intensities. Participants categorized a subsequently applied electrical stimulus as either low- or high-intensity pain. A shift in starting point towards high pain correlated negatively with right dorsolateral prefrontal cortex activity during cue presentation underscoring its proposed role of “keeping pain out of mind”. This anticipatory right dorsolateral prefrontal cortex signal increase was positively correlated with periaqueductal gray (PAG) activity when the expected high-intensity stimulation was applied. A drift rate increase during unexpected high-intensity pain was reflected in amygdala engagement and increased functional connectivity between amygdala and PAG. Our findings suggest involvement of the PAG in both decision-making bias and altered information processing to implement expectancy effects on pain. 
    more » « less
  4. Current standards for safe delivery of electrical stimulation to the central nervous system are based on foundational studies which examined post-mortem tissue for histological signs of damage. This set of observations and the subsequently proposed limits to safe stimulation, termed the “Shannon limits,” allow for a simple calculation (using charge per phase and charge density) to determine the intensity of electrical stimulation that can be delivered safely to brain tissue. In the three decades since the Shannon limits were reported, advances in molecular biology have allowed for more nuanced and detailed approaches to be used to expand current understanding of the physiological effects of stimulation. Here, we demonstrate the use of spatial transcriptomics (ST) in an exploratory investigation to assess the biological response to electrical stimulation in the brain. Electrical stimulation was delivered to the rat visual cortex with either acute or chronic electrode implantation procedures. To explore the influence of device type and stimulation parameters, we used carbon fiber ultramicroelectrode arrays (7 μm diameter) and microwire electrode arrays (50 μm diameter) delivering charge and charge density levels selected above and below reported tissue damage thresholds (range: 2–20 nC, 0.1–1 mC/cm 2 ). Spatial transcriptomics was performed using Visium Spatial Gene Expression Slides (10x Genomics, Pleasanton, CA, United States), which enabled simultaneous immunohistochemistry and ST to directly compare traditional histological metrics to transcriptional profiles within each tissue sample. Our data give a first look at unique spatial patterns of gene expression that are related to cellular processes including inflammation, cell cycle progression, and neuronal plasticity. At the acute timepoint, an increase in inflammatory and plasticity related genes was observed surrounding a stimulating electrode compared to a craniotomy control. At the chronic timepoint, an increase in inflammatory and cell cycle progression related genes was observed both in the stimulating vs. non-stimulating microwire electrode comparison and in the stimulating microwire vs. carbon fiber comparison. Using the spatial aspect of this method as well as the within-sample link to traditional metrics of tissue damage, we demonstrate how these data may be analyzed and used to generate new hypotheses and inform safety standards for stimulation in cortex. 
    more » « less
  5. Recovery of consciousness after traumatic brain injury (TBI) is heterogeneous and difficult to predict. Structures such as the thalamus and prefrontal cortex are thought to be important in facilitating consciousness. We sought to investigate whether the integrity of thalamo-prefrontal circuits, assessed via diffusion tensor imaging (DTI), was associated with the return of goal-directed behavior after severe TBI. We classified a cohort of severe TBI patients ( N = 25, 20 males) into Early and Late/Never outcome groups based on their ability to follow commands within 30 days post-injury. We assessed connectivity between whole thalamus, and mediodorsal thalamus (MD), to prefrontal cortex (PFC) subregions including dorsolateral PFC (dlPFC), medial PFC (mPFC), anterior cingulate (ACC), and orbitofrontal (OFC) cortices. We found that the integrity of thalamic projections to PFC subregions (L OFC, L and R ACC, and R mPFC) was significantly associated with Early command-following. This association persisted when the analysis was restricted to prefrontal-mediodorsal (MD) thalamus connectivity. In contrast, dlPFC connectivity to thalamus was not significantly associated with command-following. Using the integrity of thalamo-prefrontal connections, we created a linear regression model that demonstrated 72% accuracy in predicting command-following after a leave-one-out analysis. Together, these data support a role for thalamo-prefrontal connectivity in the return of goal-directed behavior following TBI. 
    more » « less