skip to main content


Title: Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from drones
Increasingly, drone-based photogrammetry has been used to measure size and body condition changes in marine megafauna. A broad range of platforms, sensors, and altimeters are being applied for these purposes, but there is no unified way to predict photogrammetric uncertainty across this methodological spectrum. As such, it is difficult to make robust comparisons across studies, disrupting collaborations amongst researchers using platforms with varying levels of measurement accuracy. Here we built off previous studies quantifying uncertainty and used an experimental approach to train a Bayesian statistical model using a known-sized object floating at the water’s surface to quantify how measurement error scales with altitude for several different drones equipped with different cameras, focal length lenses, and altimeters. We then applied the fitted model to predict the length distributions and estimate age classes of unknown-sized humpback whales Megaptera novaeangliae , as well as to predict the population-level morphological relationship between rostrum to blowhole distance and total body length of Antarctic minke whales Balaenoptera bonaerensis . This statistical framework jointly estimates errors from altitude and length measurements from multiple observations and accounts for altitudes measured with both barometers and laser altimeters while incorporating errors specific to each. This Bayesian model outputs a posterior predictive distribution of measurement uncertainty around length measurements and allows for the construction of highest posterior density intervals to define measurement uncertainty, which allows one to make probabilistic statements and stronger inferences pertaining to morphometric features critical for understanding life history patterns and potential impacts from anthropogenically altered habitats.  more » « less
Award ID(s):
1643877 2026045
NSF-PAR ID:
10315597
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
673
ISSN:
0171-8630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Body condition is a crucial and indicative measure of an animal’s fitness, reflecting overall foraging success, habitat quality, and balance between energy intake and energetic investment toward growth, maintenance, and reproduction. Recently, drone-based photogrammetry has provided new opportunities to obtain body condition estimates of baleen whales in one, two or three dimensions (1D, 2D, and 3D, respectively) – a single width, a projected dorsal surface area, or a body volume measure, respectively. However, no study to date has yet compared variation among these methods and described how measurement uncertainty scales across these dimensions. This associated uncertainty may affect inference derived from these measurements, which can lead to misinterpretation of data, and lack of comparison across body condition measurements restricts comparison of results between studies. Here we develop a Bayesian statistical model using known-sized calibration objects to predict the length and width measurements of unknown-sized objects (e.g., a whale). We use the fitted model to predict and compare uncertainty associated with 1D, 2D, and 3D photogrammetry-based body condition measurements of blue, humpback, and Antarctic minke whales – three species of baleen whales with a range of body sizes. The model outputs a posterior predictive distribution of body condition measurements and allows for the construction of highest posterior density intervals to define measurement uncertainty. We find that uncertainty does not scale linearly across multi-dimensional measurements, with 2D and 3D uncertainty increasing by a factor of 1.45 and 1.76 compared to 1D, respectively. Each standardized body condition measurement is highly correlated with one another, yet 2D body area index (BAI) accounts for potential variation along the body for each species and was the most precise body condition metric. We hope this study will serve as a guide to help researchers select the most appropriate body condition measurement for their purposes and allow them to incorporate photogrammetric uncertainty associated with these measurements which, in turn, will facilitate comparison of results across studies. 
    more » « less
  2. Abstract. Mesoscale dynamics in the mesosphere and lower thermosphere (MLT) region have been difficult to study from either ground- or satellite-based observations. For understanding of atmospheric coupling processes, important spatial scales at these altitudes range between tens and hundreds of kilometers in the horizontal plane. To date, this scale size is challenging observationally, so structures are usually parameterized in global circulation models. The advent of multistatic specular meteor radar networks allows exploration of MLT mesoscale dynamics on these scales using an increased number of detections and a diversity of viewing angles inherent to multistatic networks. In this work, we introduce a four-dimensional wind field inversion method that makes use of Gaussian process regression (GPR), which is a nonparametric and Bayesian approach. The method takes measured projected wind velocities and prior distributions of the wind velocity as a function of space and time, specified by the user or estimated from the data, and produces posterior distributions for the wind velocity. Computation of the predictive posterior distribution is performed on sampled points of interest and is not necessarily regularly sampled. The main benefits of the GPR method include this non-gridded sampling, the built-in statistical uncertainty estimates, and the ability to horizontally resolve winds on relatively small scales. The performance of the GPR implementation has been evaluated on Monte Carlo simulations with known distributions using the same spatial and temporal sampling as 1 d of real meteor measurements. Based on the simulation results we find that the GPR implementation is robust, providing wind fields that are statistically unbiased with statistical variances that depend on the geometry and are proportional to the prior velocity variances. A conservative and fast approach can be straightforwardly implemented by employing overestimated prior variances and distances, while a more robust but computationally intensive approach can be implemented by employing training and fitting of model hyperparameters. The latter GPR approach has been applied to a 24 h dataset and shown to compare well to previously used homogeneous and gradient methods. Small-scale features have reasonably low statistical uncertainties, implying geophysical wind field horizontal structures as low as 20–50 km. We suggest that this GPR approach forms a suitable method for MLT regional and weather studies. 
    more » « less
  3. Abstract

    The flourishing application of drones within marine science provides more opportunity to conduct photogrammetric studies on large and varied populations of many different species. While these new platforms are increasing the size and availability of imagery datasets, established photogrammetry methods require considerable manual input, allowing individual bias in techniques to influence measurements, increasing error and magnifying the time required to apply these techniques.

    Here, we introduce the next generation of photogrammetry methods utilizing a convolutional neural network to demonstrate the potential of a deep learning‐based photogrammetry system for automatic species identification and measurement. We then present the same data analysed using conventional techniques to validate our automatic methods.

    Our results compare favorably across both techniques, correctly predicting whale species with 98% accuracy (57/58) for humpback whales, minke whales, and blue whales. Ninety percent of automated length measurements were within 5% of manual measurements, providing sufficient resolution to inform morphometric studies and establish size classes of whales automatically.

    The results of this study indicate that deep learning techniques applied to survey programs that collect large archives of imagery may help researchers and managers move quickly past analytical bottlenecks and provide more time for abundance estimation, distributional research, and ecological assessments.

     
    more » « less
  4. Abstract The directional flame thermometer (DFT) is a robust device used to measure heat fluxes in harsh environments such as fire scenarios but is large when compared to other standard heat flux measurement devices. To better understand the uncertainties associated with heat flux measurements in these environments, a Bayesian framework is utilized to propagate uncertainties of both known and unknown parameters describing the thermal model of a modified, smaller DFT. Construction of the modified DFT is described along with a derivation of the thermal model used to predict the incident heat flux to its sensing surface. Parameters of the model are calibrated to data collected using a Schmidt–Boelter (SB) gauge with an accuracy of ±3% at incident heat fluxes of 5 kW/m2, 10 kW/m2, and 15 kW/m2. Markov Chain Monte Carlo simulations were used to obtain posterior distributions for the free parameters of the thermal model as well as the modeling uncertainty. The parameter calibration process produced values for the free parameters that were similar to those presented in the literature with relative uncertainties at 5 kW/m2, 10 kW/m2, and 15 kW/m2 of 17%, 9%, and 7%, respectively. The derived model produced root-mean-squared errors between the prediction and SB gauge output of 0.37, 0.77, and 1.13 kW/m2 for the 5, 10, and 15 kW/m2 cases, respectively, compared to 0.53, 1.12, and 1.66 kW/m2 for the energy storage method (ESM) described in ASTM E3057. 
    more » « less
  5. Abstract

    The critical zone (CZ) is the region of the Earth’s surface that extends from the bottom of the weathered bedrock to the tree canopy and is important because of its ability to store water and support ecosystems. A growing number of studies use active source shallow seismic refraction to explore and define the size and structure of the CZ across landscapes. However, measurement uncertainty and model resolution at depth are generally not evaluated, which makes the identification and interpretation of CZ features inconclusive. To reliably resolve seismic velocity with depth, we implement a Transdimensional Hierarchical Bayesian (THB) framework with reversible‐jump Markov Chain Monte Carlo to generate samples from the posterior distribution of velocity structures. We also perform 2D synthetic tests to explore how well THB traveltime inversion can resolve different subsurface velocity structures. We find that THB recovers both sharp changes in velocity as well as gradual velocity increases with depth. Furthermore, we explore the velocity structure in a series of ridge‐valley systems in northern California. The posterior velocity model shows an increasing thickness of low velocity material from channels to ridgetops along a transect parallel to bedding strike, implying a deeper weathering zone below ridgetops and hillslopes than below channels. The THB method enhances the ability to reliably image CZ structure, and the model uncertainty estimates it yields provides an objective way to interpret deep CZ structure. The method can be applied across other near‐surface studies, especially in the presence of significant surface topography.

     
    more » « less