skip to main content


Title: Pathogenic Vibrio Species Are Associated with Distinct Environmental Niches and Planktonic Taxa in Southern California (USA) Aquatic Microbiomes
ABSTRACT Interactions between vibrio bacteria and the planktonic community impact marine ecology and human health. Many coastal Vibrio spp. can infect humans, representing a growing threat linked to increasing seawater temperatures. Interactions with eukaryotic organisms may provide attachment substrate and critical nutrients that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. However, vibrio interactions with planktonic organisms in an environmental context are poorly understood. We quantified the pathogenic Vibrio species V. cholerae , V. parahaemolyticus , and V. vulnificus monthly for 1 year at five sites and observed high abundances, particularly during summer months, with species-specific temperature and salinity distributions. Using metabarcoding, we established a detailed profile of both prokaryotic and eukaryotic coastal microbial communities. We found that pathogenic Vibrio species were frequently associated with distinct eukaryotic amplicon sequence variants (ASVs), including diatoms and copepods. Shared environmental conditions, such as high temperatures and low salinities, were associated with both high concentrations of pathogenic vibrios and potential environmental reservoirs, which may influence vibrio infection risks linked to climate change and should be incorporated into predictive ecological models and experimental laboratory systems. IMPORTANCE Many species of coastal vibrio bacteria can infect humans, representing a growing health threat linked to increasing seawater temperatures. However, their interactions with surrounding microbes in the environment, especially eukaryotic organisms that may provide nutrients and attachment substrate, are poorly understood. We quantified three pathogenic Vibrio species monthly for a duration of 1 year, finding that all three species were abundant and exhibited species-specific temperature and salinity distributions. Using metabarcoding, we investigated associations between these pathogenic species and prokaryotic and eukaryotic microbes, revealing genus and amplicon sequence variant (ASV)-specific relationships with potential functional implications. For example, pathogenic species were frequently associated with chitin-producing eukaryotes, such as diatoms in the genus Thalassiosira and copepods. These associations between high concentrations of pathogenic vibrios and potential environmental reservoirs should be considered when predicting infection risk and developing ecologically relevant model systems.  more » « less
Award ID(s):
1756884 1637632
NSF-PAR ID:
10315721
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Bernstein, Hans C.
Date Published:
Journal Name:
mSystems
Volume:
6
Issue:
4
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dozois, Charles M. (Ed.)
    ABSTRACT Vibrio spp. and phytoplankton are naturally abundant in marine environments. Recent studies have suggested that the co-occurrence of phytoplankton and the pathogenic bacterium Vibrio parahaemolyticus is due to shared ecological factors, such as nutrient requirements. We compared these communities at two locations in the Delaware Inland Bays, representing a site with high anthropogenic inputs (Torquay Canal) and a less developed area (Sloan Cove). In 2017 to 2018, using light microscopy, we were able to identify the presence of many bloom-forming algal species, such as Karlodinium veneficum , Dinophysis acuminata , Heterosigma akashiwo , and Chattonella subsalsa . Dinoflagellate biomass was higher at Torquay Canal than that at Sloan Cove. D. acuminata and Chloromorum toxicum were found only at Torquay Canal and were not observed in Sloan Cove. Most probable number real-time PCR revealed V. parahaemolyticus and Vibrio vulnificus in environmental samples. The abundance of vibrios and their virulence genes varied between sites, with a significant association between total dissolved nitrogen (TDN), PO 4 − , total dissolved phosphorus (TDP), and pathogenic markers. A generalized linear model revealed that principal component 1 of environmental factors (temperature, dissolved oxygen, salinity, TDN, PO 4 − , TDP, NO 3 :NO 2 , NO 2 − , and NH 4 + ) was the best at detecting total ( tlh+ ) V. parahaemolyticus , suggesting that they are the prime drivers for the growth and distribution of pathogenic Vibrio spp. IMPORTANCE Vibrio-associated illnesses have been expanding globally over the past several decades (A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, and B. E. Mahon, Clin Infect Dis 54:S391–S395, 2012, https://doi.org/10.1093/cid/cis243 ). Many studies have linked this expansion with an increase in global temperature (J. Martinez-Urtaza, B. C. John, J. Trinanes, and A. DePaola, Food Res Int 43:10, 2010, https://doi.org/10.1016/j.foodres.2010.04.001 ; L. Vezzulli, R. R. Colwell, and C. Pruzzo, Microb Ecol 65:817–825, 2013, https://doi.org/10.1007/s00248-012-0163-2 ; R. N. Paranjpye, W. B. Nilsson, M. Liermann, and E. D. Hilborn, FEMS Microbiol Ecol 91:fiv121, 2015, https://doi.org/10.1093/femsec/fiv121 ). Temperature and salinity are the two major factors affecting the distribution of Vibrio spp. (D. Ceccarelli and R. R. Colwell, Front Microbiol 5:256, 2014, https://doi.org/10.3389/fmicb.2014.00256 ). However, Vibrio sp. abundance can also be affected by nutrient load and marine plankton blooms (V. J. McKenzie and A. R. Townsend, EcoHealth 4:384–396, 2007; L. Vezzulli, C. Pruzzo, A. Huq, and R. R. Colwell, Environ Microbiol Rep 2:27–33, 2010, https://doi.org/10.1111/j.1758-2229.2009.00128.x ; S. Liu, Z. Jiang, Y. Deng, Y. Wu, J. Zhang, et al. Microbiologyopen 7:e00600, 2018, https://doi.org/10.1002/mbo3.600 ). The expansion of Vibrio spp. in marine environments calls for a deeper understanding of the biotic and abiotic factors that play a role in their abundance. We observed that pathogenic Vibrio spp. were most abundant in areas that favor the proliferation of harmful algal bloom (HAB) species. These results can inform managers, researchers, and oyster growers on factors that can influence the growth and distribution of pathogenic Vibrio spp. in the Delaware Inland Bays. 
    more » « less
  2. Dubilier, Nicole (Ed.)
    ABSTRACT The increase in prevalence and severity of coral disease outbreaks produced by Vibrio pathogens, and related to global warming, has seriously impacted reef-building corals throughout the oceans. The coral Oculina patagonica has been used as a model system to study coral bleaching produced by Vibrio infection. Previous data demonstrated that when two coral pathogens ( Vibrio coralliilyticus and Vibrio mediterranei ) simultaneously infected the coral O. patagonica , their pathogenicity was greater than when each bacterium was infected separately. Here, to understand the mechanisms underlying this synergistic effect, transcriptomic analyses of monocultures and cocultures as well as experimental infection experiments were performed. Our results revealed that the interaction between the two vibrios under culture conditions overexpressed virulence factor genes (e.g., those encoding siderophores, the type VI secretion system, and toxins, among others). Moreover, under these conditions, vibrios were also more likely to form biofilms or become motile through induction of lateral flagella. All these changes that occur as a physiological response to the presence of a competing species could favor the colonization of the host when they are present in a mixed population. Additionally, during coral experimental infections, we showed that exposure of corals to molecules released during V. coralliilyticus and V. mediterranei coculture induced changes in the coral microbiome that favored damage to coral tissue and increased the production of lyso-platelet activating factor. Therefore, we propose that competition sensing, defined as the physiological response to detection of harm or to the presence of a competing Vibrio species, enhances the ability of Vibrio coral pathogens to invade their host and cause tissue necrosis. IMPORTANCE Vibrio coralliilyticus and Vibrio mediterranei are important coral pathogens capable of inducing serious coral damage, which increases severely when they infect the host simultaneously. This has consequences related to the dispersion of these pathogens among different locations that could enhance deleterious effects on coral reefs. However, the mechanisms underlying this synergistic interaction are unknown. The work described here provides a new perspective on the complex interactions among these two Vibrio coral pathogens, suggesting that coral infection could be a collateral effect of interspecific competition. Major implications of this work are that (i) Vibrio virulence mechanisms are activated in the absence of the host as a response to interspecific competition and (ii) release of molecules by Vibrio coral pathogens produces changes in the coral microbiome that favor the pathogenic potential of the entire Vibrio community. Thus, our results highlight that social cues and competition sensing are crucial determinants of development of coral diseases. 
    more » « less
  3. Abstract. Eastern boundary upwelling systems (EBUS) contribute a disproportionatefraction of the global fish catch relative to their size and are especiallysusceptible to global environmental change. Here we present the evolution ofcommunities over 50 d in an in situ mesocosm 6 km offshore of Callao, Peru, andin the nearby unenclosed coastal Pacific Ocean. The communities weremonitored using multi-marker environmental DNA (eDNA) metabarcoding and flowcytometry. DNA extracted from weekly water samples were subjected toamplicon sequencing for four genetic loci: (1) the V1–V2 region of the 16SrRNA gene for photosynthetic eukaryotes (via their chloroplasts) andbacteria; (2) the V9 region of the 18S rRNA gene for exploration ofeukaryotes but targeting phytoplankton; (3) cytochrome oxidase I (COI) forexploration of eukaryotic taxa but targeting invertebrates; and (4) the 12SrRNA gene, targeting vertebrates. The multi-marker approach showed adivergence of communities (from microbes to fish) between the mesocosm andthe unenclosed ocean. Together with the environmental information, thegenetic data furthered our mechanistic understanding of the processes thatare shaping EBUS communities in a changing ocean. The unenclosed oceanexperienced significant variability over the course of the 50 d experiment,with temporal shifts in community composition, but remained dominated byorganisms that are characteristic of high-nutrient upwelling conditions(e.g., diatoms, copepods, anchovies). A large directional change was found inthe mesocosm community. The mesocosm community that developed wascharacteristic of upwelling regions when upwelling relaxes and watersstratify (e.g., dinoflagellates, nanoflagellates). The selection ofdinoflagellates under the salinity-driven experimentally stratifiedconditions in the mesocosm, as well as the warm conditions brought about bythe coastal El Niño, may be an indication of how EBUS will respond underthe global environmental changes (i.e., increases in surface temperature andfreshwater input, leading to increased stratification) forecast by the IPCC. 
    more » « less
  4. Dudley, Edward G. (Ed.)
    Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. 
    more » « less
  5. Abstract

    Prophages are known to encode important virulence factors in the human pathogenVibrio cholerae. However, little is known about the occurrence and composition of prophage-encoded traits in environmental vibrios. A database of 5,674 prophage-like elements constructed from 1,874Vibriogenome sequences, covering sixty-four species, revealed that prophage-like elements encoding possible properties such as virulence and antibiotic resistance are widely distributed among environmental vibrios, including strains classified as non-pathogenic. Moreover, we found that 45% ofVibriospecies harbored a complete prophage-like element belonging to theInoviridaefamily, which encode the zonula occludens toxin (Zot) previously described in theV.cholerae. Interestingly, thesezot-encoding prophages were found in a variety ofVibriostrains covering both clinical and marine isolates, including strains from deep sea hydrothermal vents and deep subseafloor sediments. In addition, the observation that a spacer from the CRISPR locus in the marine fish pathogenV.anguillarumstrain PF7 had 95% sequence identity with azotgene from theInoviridaeprophage found inV.anguillarumstrain PF4, suggests acquired resistance to inoviruses in this species. Altogether, our results contribute to the understanding of the role of prophages as drivers of evolution and virulence in the marineVibriobacteria.

     
    more » « less