skip to main content

This content will become publicly available on July 26, 2024

Title: Host and Water Microbiota Are Differentially Linked to Potential Human Pathogen Accumulation in Oysters
Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Dudley, Edward G.
Publisher / Repository:
American Society of Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bernstein, Hans C. (Ed.)
    ABSTRACT Interactions between vibrio bacteria and the planktonic community impact marine ecology and human health. Many coastal Vibrio spp. can infect humans, representing a growing threat linked to increasing seawater temperatures. Interactions with eukaryotic organisms may provide attachment substrate and critical nutrients that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. However, vibrio interactions with planktonic organisms in an environmental context are poorly understood. We quantified the pathogenic Vibrio species V. cholerae , V. parahaemolyticus , and V. vulnificus monthly for 1 year at five sites and observed high abundances, particularly during summer months, with species-specific temperature and salinity distributions. Using metabarcoding, we established a detailed profile of both prokaryotic and eukaryotic coastal microbial communities. We found that pathogenic Vibrio species were frequently associated with distinct eukaryotic amplicon sequence variants (ASVs), including diatoms and copepods. Shared environmental conditions, such as high temperatures and low salinities, were associated with both high concentrations of pathogenic vibrios and potential environmental reservoirs, which may influence vibrio infection risks linked to climate change and should be incorporated into predictive ecological models and experimental laboratory systems. IMPORTANCE Many species of coastal vibrio bacteria can infect humans, representing a growing health threat linked to increasing seawater temperatures. However, their interactions with surrounding microbes in the environment, especially eukaryotic organisms that may provide nutrients and attachment substrate, are poorly understood. We quantified three pathogenic Vibrio species monthly for a duration of 1 year, finding that all three species were abundant and exhibited species-specific temperature and salinity distributions. Using metabarcoding, we investigated associations between these pathogenic species and prokaryotic and eukaryotic microbes, revealing genus and amplicon sequence variant (ASV)-specific relationships with potential functional implications. For example, pathogenic species were frequently associated with chitin-producing eukaryotes, such as diatoms in the genus Thalassiosira and copepods. These associations between high concentrations of pathogenic vibrios and potential environmental reservoirs should be considered when predicting infection risk and developing ecologically relevant model systems. 
    more » « less
  2. Dozois, Charles M. (Ed.)
    ABSTRACT Vibrio spp. and phytoplankton are naturally abundant in marine environments. Recent studies have suggested that the co-occurrence of phytoplankton and the pathogenic bacterium Vibrio parahaemolyticus is due to shared ecological factors, such as nutrient requirements. We compared these communities at two locations in the Delaware Inland Bays, representing a site with high anthropogenic inputs (Torquay Canal) and a less developed area (Sloan Cove). In 2017 to 2018, using light microscopy, we were able to identify the presence of many bloom-forming algal species, such as Karlodinium veneficum , Dinophysis acuminata , Heterosigma akashiwo , and Chattonella subsalsa . Dinoflagellate biomass was higher at Torquay Canal than that at Sloan Cove. D. acuminata and Chloromorum toxicum were found only at Torquay Canal and were not observed in Sloan Cove. Most probable number real-time PCR revealed V. parahaemolyticus and Vibrio vulnificus in environmental samples. The abundance of vibrios and their virulence genes varied between sites, with a significant association between total dissolved nitrogen (TDN), PO 4 − , total dissolved phosphorus (TDP), and pathogenic markers. A generalized linear model revealed that principal component 1 of environmental factors (temperature, dissolved oxygen, salinity, TDN, PO 4 − , TDP, NO 3 :NO 2 , NO 2 − , and NH 4 + ) was the best at detecting total ( tlh+ ) V. parahaemolyticus , suggesting that they are the prime drivers for the growth and distribution of pathogenic Vibrio spp. IMPORTANCE Vibrio-associated illnesses have been expanding globally over the past several decades (A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, and B. E. Mahon, Clin Infect Dis 54:S391–S395, 2012, ). Many studies have linked this expansion with an increase in global temperature (J. Martinez-Urtaza, B. C. John, J. Trinanes, and A. DePaola, Food Res Int 43:10, 2010, ; L. Vezzulli, R. R. Colwell, and C. Pruzzo, Microb Ecol 65:817–825, 2013, ; R. N. Paranjpye, W. B. Nilsson, M. Liermann, and E. D. Hilborn, FEMS Microbiol Ecol 91:fiv121, 2015, ). Temperature and salinity are the two major factors affecting the distribution of Vibrio spp. (D. Ceccarelli and R. R. Colwell, Front Microbiol 5:256, 2014, ). However, Vibrio sp. abundance can also be affected by nutrient load and marine plankton blooms (V. J. McKenzie and A. R. Townsend, EcoHealth 4:384–396, 2007; L. Vezzulli, C. Pruzzo, A. Huq, and R. R. Colwell, Environ Microbiol Rep 2:27–33, 2010, ; S. Liu, Z. Jiang, Y. Deng, Y. Wu, J. Zhang, et al. Microbiologyopen 7:e00600, 2018, ). The expansion of Vibrio spp. in marine environments calls for a deeper understanding of the biotic and abiotic factors that play a role in their abundance. We observed that pathogenic Vibrio spp. were most abundant in areas that favor the proliferation of harmful algal bloom (HAB) species. These results can inform managers, researchers, and oyster growers on factors that can influence the growth and distribution of pathogenic Vibrio spp. in the Delaware Inland Bays. 
    more » « less
  3. Abstract

    Foundation species, such as mangroves, saltmarshes, kelps, seagrasses, and oysters, thrive within suitable environmental envelopes as narrow ribbons along the land–sea margin. Therefore, these habitat‐forming species and resident fauna are sensitive to modified environmental gradients. For oysters, many estuaries impacted by sea‐level rise, channelization, and municipal infrastructure are experiencing saltwater intrusion and water‐quality degradation that may alter reef distributions, functions, and services. To explore decadal‐scale oyster–reef community patterns across a temperate estuary in response to environmental change, we resampled reefs in the Newport River Estuary (NRE) during 2013–2015 that had previously been studied during 1955–1956. We also coalesced historical NRE reef distribution (1880s–2015), salinity (1913–2015), and water‐quality‐driven shellfish closure boundary (1970s–2015) data to document environmental trends that could influence reef ecology and service delivery. Over the last 60–120 years, the entire NRE has shifted toward higher salinities. Consequently, oyster–reef communities have become less distinct across the estuary, manifest by 20%–27% lower species turnover and decreased faunal richness among NRE reefs in the 2010s relative to the 1950s. During the 2010s, NRE oyster–reef communities tended to cluster around a euhaline, intertidal‐reef type more so than during the 1950s. This followed faunal expansions farther up estuary and biological degradation of subtidal reefs as NRE conditions became more marine and favorable for aggressive, reef‐destroying taxa. In addition to these biological shifts, the area of suitable bottom on which subtidal reefs persist (contracting due to up‐estuary intrusion of marine waters) and support human harvest (driven by water quality, eroding from up‐estuary) has decreased by >75% since the natural history of NRE reefs was first explored. This “coastal squeeze” on harvestable subtidal oysters (reduced from a 4.5‐km to a 0.75‐km envelope along the NRE's main axis) will likely have consequences regarding the economic incentives for future oyster conservation, as well as the suite of services delivered by remaining shellfish reefs (e.g., biodiversity maintenance, seafood supply). More broadly, these findings exemplify how “squeeze” may be a pervasive concern for biogenic habitats along terrestrial or marine ecotones during an era of intense global change.

    more » « less
  4. Microorganisms are central to the functioning of coral reef ecosystems, but their dynamics are unstudied on most reefs. We examined the microbial ecology of shallow reefs within the Federated States of Micronesia. We surveyed 20 reefs surrounding 7 islands and atolls (Yap, Woleai, Olimarao, Kosrae, Kapingamarangi, Nukuoro, and Pohnpei), spanning 875053 km 2 . On the reefs, we found consistently higher coral coverage (mean ± SD = 36.9 ± 22.2%; max 77%) compared to macroalgae coverage (15.2 ± 15.5%; max 58%), and low abundances of fish. Reef waters had low inorganic nutrient concentrations and were dominated by Synechococcus, Prochlorococcus, and SAR11 bacteria. The richness of bacterial and archaeal communities was significantly related to interactions between island/atoll and depth. High coral coverage on reefs was linked to higher relative abundances of Flavobacteriaceae, Leisingera, Owenweeksia, Vibrio, and the OM27 clade, as well as other heterotrophic bacterial groups, consistent with communities residing in waters near corals and within coral mucus. Microbial community structure at reef depth was significantly correlated with geographic distance, suggesting that island biogeography influences reef microbial communities. Reefs at Kosrae Island, which hosted the highest coral abundance and diversity, were unique compared to other locations; seawater from Kosrae reefs had the lowest organic carbon (59.8-67.9 µM), highest organic nitrogen (4.5-5.3 µM), and harbored consistent microbial communities (>85% similar), which were dominated by heterotrophic cells. This study suggests that the reef-water microbial ecology on Micronesian reefs is influenced by the density and diversity of corals as well as other biogeographical features. 
    more » « less
  5. Stabb, Eric V. (Ed.)
    ABSTRACT Dimethylsulfoniopropionate (DMSP), a key component of the global geochemical sulfur cycle, is a secondary metabolite produced in large quantities by marine phytoplankton and utilized as an osmoprotectant, thermoprotectant, and antioxidant. Marine bacteria can use two pathways to degrade and catabolize DMSP, a demethylation pathway and a cleavage pathway that produces the climate-active gas dimethylsulfide (DMS). Whether marine bacteria can also accumulate DMSP as an osmoprotectant to maintain the turgor pressure of the cell in response to changes in external osmolarity has received little attention. The marine halophile Vibrio parahaemolyticus contains at least six osmolyte transporters, namely four betaine carnitine choline transport (BCCT) carriers (BccT1 to BccT4) and two ATP-binding cassette (ABC) family ProU transporters. In this study, we showed that DMSP is used as an osmoprotectant by V. parahaemolyticus and by several other Vibrio species, including Vibrio cholerae and Vibrio vulnificus . Using a V. parahaemolyticus proU double mutant, we demonstrated that these ABC transporters are not required for DMSP uptake. However, a bccT null mutant lacking all four BCCTs had a growth defect compared to the wild type (WT) in high-salinity medium supplemented with DMSP. Using mutants possessing only one functional BCCT in growth pattern assays, we identified two BCCT family transporters, BccT1 and BccT2, that are carriers of DMSP. The only V. parahaemolyticus BccT homolog that V. cholerae and V. vulnificus possess is BccT3, and functional complementation in Escherichia coli MKH13 showed that V. cholerae VcBccT3 could transport DMSP. In V. vulnificus strains, we identified and characterized an additional BCCT family transporter, which we named BccT5, that was also a carrier for DMSP. IMPORTANCE DMSP is present in the marine environment, produced in large quantities by marine phytoplankton as an osmoprotectant, and is an important component of the global geochemical sulfur cycle. This algal osmolyte has not been previously investigated for its role in marine heterotrophic bacterial osmotic stress response. Vibrionaceae species are marine species, many of which are halophiles exemplified by V. parahaemolyticus , a species that possesses at least six transporters for the uptake of osmolytes. Here, we demonstrated that V. parahaemolyticus and other Vibrio species can accumulate DMSP as an osmoprotectant and show that several BCCT family transporters uptake DMSP. These studies suggest that DMSP is a significant bacterial osmoprotectant that may be important for understanding the fate of DMSP in the environment. DMSP is produced and present in coral mucus, and Vibrio species form part of the microbial communities associated with corals. The function of DMSP in these interactions is unclear, but it could be an important driver for these associations, allowing Vibrio proliferation. This work suggests that DMSP likely has a more important role in heterotrophic bacteria ecology than previously appreciated. 
    more » « less