Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes—urbanization and forest edge creation—on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new “suites” of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction—including increased greenhouse gas production—in temperate forest regions that are subsumed by urban expansion, both now and in the future. 
                        more » 
                        « less   
                    
                            
                            Urbanization and fragmentation mediate temperate forest carbon cycle response to climate
                        
                    
    
            Abstract Forest fragmentation is ubiquitous across urban and rural areas. While there is mounting evidence that forest fragmentation alters the terrestrial carbon cycle, the extent to which differences in ambient growing conditions between urban and rural landscapes mediate forest response to fragmentation and climate remains unexamined. This study integrates field measurements of forest structure, growth, and soil respiration with climate data and high-resolution land-cover maps to quantify forest carbon storage and sequestration patterns along edge-to-interior gradients. These data were used to contrast the response of temperate broadleaf forests to non-forest edges within rural and urban landscapes. We find that forest growth rates in both rural and urban landscapes nearly double from the forest interior to edge. Additionally, these edge-induced enhancements in forest growth are not offset by concurrent increases in total soil respiration observed across our sites. Forest productivity generally increases near edges because of increases in leaf area, but elevated air temperature at the edge tempers this response and imparts greater sensitivity of forest growth to heat. In particular, the adverse impacts of heat on forest growth are two to three times larger in urban than rural landscapes. We demonstrate that the highly fragmented nature of urban forests compared to rural forests makes them a stronger carbon sink per unit area, but also much more vulnerable to a warming climate. Collectively, our results highlight the need to include the effects of both urbanization and fragmentation when quantifying regional carbon balance and its response to a changing climate. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10315910
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 1748-9326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments.more » « less
- 
            Abstract Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet and dry seasons in Central Amazonia to show that plant phenology varies strongly across vertical strata in old-growth forests, but is sensitive to disturbances arising from forest fragmentation. In combination with continuous microclimate measurements, we find that when maximum daily temperatures reached 35 °C in the latter part of the dry season, the upper canopy of large trees in undisturbed forests lost plant material. In contrast, the understory greened up with increased light availability driven by the upper canopy loss, alongside increases in solar radiation, even during periods of drier soil and atmospheric conditions. However, persistently high temperatures in forest edges exacerbated the upper canopy losses of large trees throughout the dry season, whereas the understory in these light-rich environments was less dependent on the altered upper canopy structure. Our findings reveal a strong influence of edge effects on phenological controls in wet forests of Central Amazonia.more » « less
- 
            functions and services for human societies. Temperatures are increasing most rapidly in high northern latitudes, altering tree growth and competition dynamics, and modifying disturbance regimes. The effect of these cumulative changes on the ecosystem functions provided by boreal forests is difficult to predict. We used the process-based LANDIS-II forest landscape model to evaluate how climate change and timber harvesting will interact to alter the production of ecosystem functions and services in boreal forests on three study areas across a large latitudinal gradient (11°) in central Siberia. We found that the relative importance of wood harvesting as a disturbance type varied depending on latitude and its impact was always far less than that of fire. Moderate climate change increased the availability of wood for harvest in the northern landscape, but wood availability declined in the southern landscapes under any amount of climate change likely because of an increase in the frequency of fire that kept forests too young for harvest. Modest climate change (RCP6.0) increased productivity and the storage of carbon in all landscapes but severe climate change (RCP8.5) reduced both in the southernmost landscape. Harvesting as a specific driver of change in these boreal forests is likely to be relatively minor except as a forest fragmentation process. Our results provide compelling evidence that status quo forest management in these landscapes is likely not sustainable, suggesting that climate-smart forestry will be needed.more » « less
- 
            The Baltimore Ecosystem Study (BES) has established a network of long-term permanent biogeochemical study plots. These plots will provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The current network of study plots includes eight forest plots, chosen to represent the range of forest conditions in the area, and four grass plots. These plots are complemented by a network of 200 less intensive study plots located across the Baltimore metropolitan area. Plots are currently instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998. This data record contains near-monthly water content measurements, and the record continues with hourly data found in: Baltimore Ecosystem Study: Soil moisture and temperature along an urban to rural gradient, 2011- present https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-bes&identifier=3400 Data from these plots has been published in the following papers: Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    