skip to main content


Title: Urbanization and fragmentation mediate temperate forest carbon cycle response to climate
Abstract Forest fragmentation is ubiquitous across urban and rural areas. While there is mounting evidence that forest fragmentation alters the terrestrial carbon cycle, the extent to which differences in ambient growing conditions between urban and rural landscapes mediate forest response to fragmentation and climate remains unexamined. This study integrates field measurements of forest structure, growth, and soil respiration with climate data and high-resolution land-cover maps to quantify forest carbon storage and sequestration patterns along edge-to-interior gradients. These data were used to contrast the response of temperate broadleaf forests to non-forest edges within rural and urban landscapes. We find that forest growth rates in both rural and urban landscapes nearly double from the forest interior to edge. Additionally, these edge-induced enhancements in forest growth are not offset by concurrent increases in total soil respiration observed across our sites. Forest productivity generally increases near edges because of increases in leaf area, but elevated air temperature at the edge tempers this response and imparts greater sensitivity of forest growth to heat. In particular, the adverse impacts of heat on forest growth are two to three times larger in urban than rural landscapes. We demonstrate that the highly fragmented nature of urban forests compared to rural forests makes them a stronger carbon sink per unit area, but also much more vulnerable to a warming climate. Collectively, our results highlight the need to include the effects of both urbanization and fragmentation when quantifying regional carbon balance and its response to a changing climate.  more » « less
Award ID(s):
1832210 1950364
NSF-PAR ID:
10315910
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
11
ISSN:
1748-9326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes—urbanization and forest edge creation—on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new “suites” of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction—including increased greenhouse gas production—in temperate forest regions that are subsumed by urban expansion, both now and in the future.

     
    more » « less
  2. Abstract

    Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments.

     
    more » « less
  3. Abstract

    Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three‐city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban–rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree‐planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.

     
    more » « less
  4. Abstract

    Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi‐year measurements of vegetation dynamics and function (fluxes of CO2and H2O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50‐ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6‐year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%–94% along forest edges (0–200 m into the forest) and 36%–40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%–80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light‐use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.

     
    more » « less
  5. With over half of earth's terrestrial biota living beneath forest canopies, our ability to accurately capture organism–climate relationships in forested ecosystems is imperative for predicting species' vulnerability to future climate change. Assessing the vulnerability of forest dependent species, however, hinges on quantifying microclimates that exist below the forest canopy and might be influenced by varying levels of disturbance in human‐modified landscapes. The goal of our study was to examine the multi‐scaled predictors of subcanopy microclimate variability across a heterogeneous landscape in Midwestern USA during winter, and to further evaluate whether a widely available interpolated climate model accurately captures this variability. By deploying a network of temperature sensors along a fragmentation gradient, we found that forests in more fragmented landscapes with greater amounts of forest edge and increasing distances between forest patches, experienced colder minimum and average daily temperatures throughout the winter than forests in less fragmented landscapes. We found that greater tree densities and higher elevations led to warmer microclimates while increasing distances from urban centers led to colder microclimates. The negative effect of forest edge on minimum temperatures was lessened by the effect of increasing basal area, highlighting the importance of local‐ and landscape‐scale features on microclimate heterogeneity. Temperature discrepancies between subcanopy microclimates and climate interpolations were influenced by many of the same features, and could be of a similar magnitude as those predicted by future climate change scenarios. Using a biological threshold based on metabolic and demographic constraints for winter birds, we found that the variability in microclimates along our forest fragmentation gradient (50 km) was comparable to the magnitude captured by weather stations across a latitudinal gradient spanning more than 650 km. Our results suggest that biophysical properties of landscapes can alter spatial gradients of microclimates and should be considered when assessing species' vulnerabilities to future climate change.

     
    more » « less