skip to main content


Title: Revealing redox isomerism in trichromium imides by anomalous diffraction
In polynuclear biological active sites, multiple electrons are needed for turnover, and the distribution of these electrons among the metal sites is affected by the structure of the active site. However, the study of the interplay between structure and redox distribution is difficult not only in biological systems but also in synthetic polynuclear clusters since most redox changes produce only one thermodynamically stable product. Here, the unusual chemistry of a sterically hindered trichromium complex allowed us to probe the relationship between structural and redox isomerism. Two structurally isomeric trichromium imides were isolated: asymmetric terminal imide ( tbs L)Cr 3 (NDipp) and symmetric, μ 3 -bridging imide ( tbs L)Cr 3 (μ 3 –NBn) (( tbs L) 6− = (1,3,5-C 6 H 9 (NC 6 H 4 - o -NSi t BuMe 2 ) 3 ) 6− ). Along with the homovalent isocyanide adduct ( tbs L)Cr 3 (CNBn) and the bisimide ( tbs L)Cr 3 (μ 3 –NPh)(NPh), both imide isomers were examined by multiple-wavelength anomalous diffraction (MAD) to determine the redox load distribution by the free refinement of atomic scattering factors. Despite their compositional similarities, the bridging imide shows uniform oxidation of all three Cr sites while the terminal imide shows oxidation at only two Cr sites. Further oxidation from the bridging imide to the bisimide is only borne at the Cr site bound to the second, terminal imido fragment. Thus, depending on the structural motifs present in each [Cr 3 ] complex, MAD revealed complete localization of oxidation, partial localization, and complete delocalization, all supported by the same hexadentate ligand scaffold.  more » « less
Award ID(s):
1834750
PAR ID:
10315925
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
47
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The trichromium cluster (tbsL)Cr3(thf) ([tbsL]6−=[1,3,5‐C6H9(NC6H4o‐NSitBuMe2)3]6−) exhibits steric‐ and solvation‐controlled reactivity with organic azides to form three distinct products: reaction of (tbsL)Cr3(thf) with benzyl azide forms a symmetrized bridging imido complex (tbsL)Cr3(μ3‐NBn); reaction with mesityl azide in benzene affords a terminally bound imido complex (tbsL)Cr3(μ1‐NMes); whereas the reaction with mesityl azide in THF leads to terminal N‐atom excision from the azide to yield the nitride complex (tbsL)Cr3(μ3‐N). The reactivity of this complex demonstrates the ability of the cluster‐templating ligand to produce a well‐defined polynuclear transition metal cluster that can access distinct single‐site and cooperative reactivity controlled by either substrate steric demands or reaction media.

     
    more » « less
  2. Abstract

    The trichromium cluster (tbsL)Cr3(thf) ([tbsL]6−=[1,3,5‐C6H9(NC6H4o‐NSitBuMe2)3]6−) exhibits steric‐ and solvation‐controlled reactivity with organic azides to form three distinct products: reaction of (tbsL)Cr3(thf) with benzyl azide forms a symmetrized bridging imido complex (tbsL)Cr3(μ3‐NBn); reaction with mesityl azide in benzene affords a terminally bound imido complex (tbsL)Cr3(μ1‐NMes); whereas the reaction with mesityl azide in THF leads to terminal N‐atom excision from the azide to yield the nitride complex (tbsL)Cr3(μ3‐N). The reactivity of this complex demonstrates the ability of the cluster‐templating ligand to produce a well‐defined polynuclear transition metal cluster that can access distinct single‐site and cooperative reactivity controlled by either substrate steric demands or reaction media.

     
    more » « less
  3. Abstract

    Metalation of the polynucleating ligandF,tbsLH6(1,3,5‐C6H9(NC6H3−4‐F−2‐NSiMe2tBu)3) with two equivalents of Zn(N(SiMe3)2)2affords the dinuclear product (F,tbsLH2)Zn2(1), which can be further deprotonated to yield (F,tbsL)Zn2Li2(OEt2)4(2). Transmetalation of2with NiCl2(py)2yields the heterometallic, trinuclear cluster (F,tbsL)Zn2Ni(py) (3). Reduction of3with KC8affords [KC222][(F,tbsL)Zn2Ni] (4) which features a monovalent Ni centre. Addition of 1‐adamantyl azide to4generates the bridging μ3‐nitrenoid adduct [K(THF)3][(F,tbsL)Zn2Ni(μ3‐NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S=). Cyclic voltammetry of5reveals two fully reversible redox events. The dianionic nitrenoid [K2(THF)9][(F,tbsL)Zn2Ni(μ3‐NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra‐ and intermolecular H‐atom abstraction processes. Ni K‐edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2Ni] nitrenoid complexes. However, DFT analysis suggests Ni‐borne oxidation for5.

     
    more » « less
  4. Abstract

    Metalation of the polynucleating ligandF,tbsLH6(1,3,5‐C6H9(NC6H3−4‐F−2‐NSiMe2tBu)3) with two equivalents of Zn(N(SiMe3)2)2affords the dinuclear product (F,tbsLH2)Zn2(1), which can be further deprotonated to yield (F,tbsL)Zn2Li2(OEt2)4(2). Transmetalation of2with NiCl2(py)2yields the heterometallic, trinuclear cluster (F,tbsL)Zn2Ni(py) (3). Reduction of3with KC8affords [KC222][(F,tbsL)Zn2Ni] (4) which features a monovalent Ni centre. Addition of 1‐adamantyl azide to4generates the bridging μ3‐nitrenoid adduct [K(THF)3][(F,tbsL)Zn2Ni(μ3‐NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S=). Cyclic voltammetry of5reveals two fully reversible redox events. The dianionic nitrenoid [K2(THF)9][(F,tbsL)Zn2Ni(μ3‐NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra‐ and intermolecular H‐atom abstraction processes. Ni K‐edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2Ni] nitrenoid complexes. However, DFT analysis suggests Ni‐borne oxidation for5.

     
    more » « less
  5. null (Ed.)
    Studies of the coordination chemistry between the diphenylamide ligand, NPh 2 , and the smaller rare-earth Ln III ions, Ln = Y, Dy, and Er, led to the structural characterization by single-crystal X-ray diffraction crystallography of both solvated and unsolvated complexes, namely, tris(diphenylamido-κ N )bis(tetrahydrofuran-κ O )yttrium(III), Y(NPh 2 ) 3 (THF) 2 or [Y(C 12 H 10 N) 3 (C 4 H 8 O) 2 ], 1-Y , and the erbium(III) (Er), 1-Er , analogue, and bis[μ-1κ N :2(η 6 )-diphenylamido]bis[bis(diphenylamido-κ N )yttrium(III)], [(Ph 2 N) 2 Y(μ-NPh 2 )] 2 or [Y 2 (C 12 H 10 N) 6 ], 2-Y , and the dysprosium(III) (Dy), 2-Dy , analogue. The THF ligands of 1-Er are modeled with disorder across two positions with occupancies of 0.627 (12):0.323 (12) and 0.633 (7):0.367 (7). Also structurally characterized was the tetrametallic Er III bridging oxide hydrolysis product, bis(μ-diphenylamido-κ 2 N : N )bis[μ-1κ N :2(η 6 )-diphenylamido]tetrakis(diphenylamido-κ N )di-μ 3 -oxido-tetraerbium(III) benzene disolvate, {[(Ph 2 N)Er(μ-NPh 2 )] 4 (μ-O) 2 }·(C 6 H 6 ) 2 or [Er 4 (C 12 H 10 N) 8 O 2 ]·2C 6 H 6 , 3-Er . The 3-Er structure was refined as a three-component twin with occupancies 0.7375:0.2010:0.0615. 
    more » « less