skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The initial sticking of high velocity water onto graphite under non-equilibrium supersonic flow conditions
In this paper, we present a combined experimental and theoretical study that explored the initial sticking of water on cooled surfaces. Specifically, these ultra-high vacuum gas–surface scattering experiments utilized supersonic molecular beam techniques in conjunction with a cryogenically cooled highly oriented pyrolytic graphite crystal, giving control over incident kinematic conditions. The D2O translational energy spanning 300–750 meV, the relative D2O flux, and the incident angle could all be varied independently. Three different experimental measurements were made. One involved measuring the total amount of D2O scattering as a function of surface temperature to determine the onset of sticking under non-equilibrium gas–surface collision conditions. Another measurement used He specular scattering to assess structural and coverage information for the interface during D2O adsorption. Finally, we used time-of-flight (TOF) measurements of the scattered D2O to determine how energy is exchanged with the graphite surface at surface temperatures above and near the conditions needed for gaseous condensation. For comparison and elaboration of the roles that internal degrees of freedom play in this process, we also did similar TOF measurements using another mass 20 incident particle, atomic neon. Enriching this study are precise molecular dynamics simulations that elaborate on gas–surface energy transfer and the roles of molecular degrees of freedom in gas–surface collisional energy exchange processes. This study furthers our fundamental understanding of energy exchange and the onset of sticking and ultimately gaseous condensation for gas–surface encounters occurring under high-velocity flows.  more » « less
Award ID(s):
2313365 2011854
PAR ID:
10524549
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
19
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. First measurements of internal quantum-state distributions for nitric oxide (NO) evaporating from liquid benzyl alcohol are presented over a broad range of temperatures, performed by liquid-microjet techniques in an essentially collision-free regime, with rotational/spin–orbit populations in the 2 Π 1/2,3/2 manifolds measured by laser-induced fluorescence. The observed rotational distributions exhibit highly linear (i.e., thermal) Boltzmann plots but notably reflect rotational temperatures ( T rot ) as much as 30 K lower than the liquid temperature ( T jet ). A comparable lack of equilibrium behavior is also noted in the electronic degrees of freedom but with populations corresponding to spin–orbit temperatures ( T SO ) consistently higher than T rot by ∼15 K. These results unambiguously demonstrate evaporation into a non-equilibrium distribution, which, by detailed-balance considerations, predict quantum-state-dependent sticking coefficients for incident collisions of NO at the gas–liquid interface. Comparison and parallels with previous experimental studies of NO thermal desorption and molecular-beam scattering in other systems are discussed, which suggests the emergence of a self-consistent picture for the non-equilibrium dynamics. 
    more » « less
  2. Although the dynamics of collisions between a molecule and a solid surface are ultimately quantum mechanical, decohering effects owing to the large number of interacting degrees of freedom typically obscure the wavelike nature of these events. However, a partial decoupling of internal molecular motion from external degrees of freedom can reveal striking interference effects despite significant momentum exchange between the molecule and the bath of surface vibrations. We report state-prepared and state-resolved measurements of methane scattering from a room-temperature gold surface that demonstrate total destructive interference between molecular states related by a reflection symmetry operation. High-contrast interference effects prevail for all processes investigated, including vibrationally excited and vibrationally inelastic collisions. The results demonstrate the distinctly quantum mechanical effect of discrete symmetries in molecular collision dynamics. 
    more » « less
  3. Using molecular simulations, we study the processes of capillary condensation and capillary evaporation in model mesopores. To determine the phase transition pathway, as well as the corresponding free energy profile, we carry out enhanced sampling molecular simulations using entropy as a reaction coordinate to map the onset of order during the condensation process and of disorder during the evaporation process. The structural analysis shows the role played by intermediate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build a machine learning model for the prediction of the free energy surfaces underlying capillary phase transition processes in mesopores. 
    more » « less
  4. Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and β-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m −3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level. 
    more » « less
  5. Abstract From transmission electron microscopy and other laboratory studies of presolar grains, the implicit condensation sequence of carbon-bearing condensates in circumstellar envelopes of carbon stars is (from first to last) TiC-graphite-SiC. We use thermochemical equilibrium condensation calculations and show that the condensation sequence of titanium carbide (TiC), graphite (C(Gr)), and silicon carbide (SiC) depends on metallicity in addition to C/O ratio and total pressure. Calculations were performed for a characteristic carbon star ratio of C/O = 1.2 from 10−10to 10−4bars total pressure and for uniform metallicity variations ranging from 0.01 to 100 times solar elemental abundances. TiC always condenses at higher temperatures than SiC, and the carbide condensation temperatures increase with both increasing metallicity and increasing total pressure. Graphite, however, can condense in a cooling circumstellar envelope before TiC, between TiC and SiC, or after SiC, depending on the carbon-bearing gas chemistry, which is dependent on metallicity and total pressure. Analytical expressions for the graphite, TiC, and SiC condensation temperatures as functions of metallicity and total pressure are presented. The inferred sequence from laboratory presolar grain studies, TiC-graphite-SiC, is favored under equilibrium conditions at solar and subsolar metallicities between ∼10−5and 10−8bar total pressure within circumstellar envelopes of carbon stars with nominal C/O = 1.2. We also explored the dependence of the sequence at C/O ratios of 1.1 and 3.0, and found that as the C/O ratio increases, the TiC-graphite-SiC condensation sequence region occurs toward higher total pressures and lower metallicities. 
    more » « less