skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.  more » « less
Award ID(s):
1637685
PAR ID:
10316220
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
4
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The decomposition of leaf litter constitutes a major pathway of carbon and nutrient cycling in terrestrial ecosystems. Though it is well established that litter decomposition varies among species, most leaf litter decomposes not alone, but in mixture with litter from heterospecifics. The consequences of this mixing, and of the role of multiple dimensions of plant biodiversity, for litter decomposition are ambiguous, with past research suggesting that mixing diverse litter can speed up, slow down, or have no effect on decomposition. Furthermore, different chemical constituents of litter decompose at different rates, and the consequences of diversity for each of these rates are not completely understood. We created litterbags corresponding to 49 different litter mixtures ranging from one to 12 temperate forest species and allowed them to decompose over 2 yr in a common garden in temperate eastern Minnesota, USA. Following collections at 2, 4, 12, and 24 months, we assessed total mass loss and changes in four classes of litter carbon (soluble cell contents, hemicellulose and bound proteins, cellulose, and lignin/acid unhydrolyzable recalcitrants). Species varied in litter decomposition rate (losing from 8% to 41% of total mass) and they lost soluble cell contents (up to 64% of ash‐free mass) and hemicellulose and bound proteins (69%) much more rapidly over 2 yr than they lost cellulose (40%) and acid‐unhydrolyzable residues (12%). A variety of macro‐ and micronutrients supported litter decomposition, with calcium, in particular, promoting it. In mixtures of litter from 2, 5, or 12 species, neither species richness nor phylogenetic diversity was associated with deviations from expected decomposition rates based on monocultures. Yet more functionally diverse litter mixtures lost labile carbon (soluble cell contents and hemicellulose) significantly more slowly than expected. This novel finding of the effect of litter diversity not on total litter decomposition, but on the decomposition of a particular class of litter compounds elucidates potential consequences of biodiversity for cycling of nutrients and energy in forest ecosystems. 
    more » « less
  2. ABSTRACT Litter decomposition is an important ecosystem process and global carbon flux that has been shown to be controlled by climate, litter quality, and microbial communities. Process‐based ecosystem models are used to predict responses of litter decomposition to climate change. While these models represent climate and litter quality effects on litter decomposition, they have yet to integrate empirical microbial community data into their parameterizations for predicting litter decomposition. To fill this gap, our research used a comprehensive leaf litterbag decomposition experiment at 10 temperate forest U.S. National Ecological Observatory Network (NEON) sites to calibrate (7 sites) and validate (3 sites) the MIcrobial‐MIneral Carbon Stabilization (MIMICS) model. MIMICS was calibrated to empirical decomposition rates and to their empirical drivers, including the microbial community (represented as the copiotroph‐to‐oligotroph ratio). We calibrate to empirical drivers, rather than solely rates or pool sizes, to improve the underlying drivers of modeled leaf litter decomposition. We then validated the calibrated model and evaluated the effects of calibration under climate change using the SSP 3–7.0 climate change scenario. We find that incorporating empirical drivers of litter decomposition provides similar, and sometimes better (in terms of goodness‐of‐fit metrics), predictions of leaf litter decomposition but with different underlying ecological dynamics. For some sites, calibration also increased climate change‐induced leaf litter mass loss by up to 5%, with implications for carbon cycle‐climate feedbacks. Our work also provides an example for integrating data on the relative abundance of bacterial functional groups into an ecosystem model using a novel calibration method to bridge empiricism and process‐based modeling, answering a call for the use of empirical microbial community data in process‐based ecosystem models. We highlight that incorporating mechanistic information into models, as done in this study, is important for improving confidence in model projections of ecological processes like litter decomposition under climate change. 
    more » « less
  3. Abstract The “hierarchy of factors” hypothesis states that decomposition rates are controlled primarily by climatic, followed by biological and soil variables. Tropical montane forests (TMF) are globally important ecosystems, yet there have been limited efforts to provide a biome‐scale characterization of litter decomposition. We designed a common litter decomposition experiment replicated in 23 tropical montane sites across the Americas, Asia, and Africa and combined these results with a previous study of 23 sites in tropical lowland forests (TLF). Specifically, we investigated (1) spatial heterogeneity in decomposition, (2) the relative importance of biological factors that affect leaf and wood decomposition in TMF, and (3) the role of climate in determining leaf litter decomposition rates within and across the TMF and TLF biomes. Litterbags of two mesh sizes containingLaurus nobilisleaves or birchwood popsicle sticks were spatially dispersed and incubated in TMF sites, for 3 and 7 months on the soil surface and at 10–15 cm depth. The within‐site replication demonstrated spatial variability in mass loss. Within TMF, litter type was the predominant biological factor influencing decomposition (leaves > wood), with mesh and burial effects playing a minor role. When comparing across TMF and TLF, climate was the predominant control over decomposition, but the Yasso07 global model (based on mean annual temperature and precipitation) only modestly predicted decomposition rate. Differences in controlling factors between biomes suggest that TMF, with their high rates of carbon storage, must be explicitly considered when developing theory and models to elucidate carbon cycling rates in the tropics. Abstract in Spanish is available with online material. 
    more » « less
  4. Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bind litter into mats (Non-Unit-Restricted) than non-preconditioned litter. Leaves of Manilkara bidentata in litterbags were preconditioned by incubating them for 0, 1, 2 or 3 months in flat litter/seed rain baskets 10 cm above the forest floor to avoid colonization by basidiomycete fungi. Preconditioned and non-preconditioned leaves were transferred to 5 replicate basidiomycete fungal mats of Gymnopus johnstonii for 6 weeks. Both attachment by basidiomycete fungi and percent mass loss after 6 weeks decreased significantly with increasing preconditioning time. In non-preconditioned leaves, gamma irradiation did not affect mass loss or percent white-rot despite having significantly increased numbers of basidiomycete fungal connections as compared to non-irradiated leaves. In non-preconditioned leaves, more basidiomycetes attachmented to non-irradiated than irradiated leaves suggest facilitation by phyllosphere microfungi. While basidiomycete colonization was initially facilitated by phyllosphere fungi, we inferred that degradation of resource quality led to fewer fungal attachments and less mass loss after 1–3 months of preconditioning by microfungi. The date suggest there is a 1-month time window for basidiomycete fungi to incorporate fallen leaves into their litter mats. 
    more » « less
  5. Headwater streams are reliant on riparian tree leaf litterfall to fuel brown food webs. Terrestrial agents like herbivores and contaminants can alter plant growth, litter production, litter quality, and the timing of litterfall into streams, influencing aspects of the brown food web. At Mount St. Helens (USA), early successional streams are developing willow (Salix sitchensis) riparian zones. The willows are attacked by stem-boring herbivores, altering litter quality and the timing of litterfall. Within a established experimental plots, willows (male and female plants) were protected from herbivores using insecticides and provided with experimental additions of nitrogen. This enabled us to test the interacting influences of herbivores, nitrogen deposition, and willow sex on leaf litter quality, aquatic litter decomposition, and microbial and invertebrate detritivores. We found weak litter quality effects (higher N and lower C:N) for the herbivore treatment, but no effect of nitrogen deposition. Although litter decomposition rates were not strongly affected by litter treatments, detritivore communities were altered by all treatments. Nitrogen deposition resulted in decreased bacterial richness and decreased fungal diversity in-stream. Aquatic macroinvertebrate communities were influenced by the interacting effects of herbivory and nitrogen addition, with abundances highest in herbivore litter with the greatest N addition. Shredders showed the highest abundance in male, herbivore-attacked litter. The establishment of riparian willows along early successional streams and their interacting effects with herbivores and nitrogen deposition may be influencing detritivore community assembly at Mount St. Helens. More broadly, global changes like increased wet and dry N deposition and expanded ranges of key herbivores might influence tree litter decomposition in many ecosystems. 
    more » « less