Abstract Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide–sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation.
more »
« less
Sequential Deposition and Remodeling of Cell Wall Polymers During Tomato Pollen Development
The cell wall of a mature pollen grain is a highly specialized, multilayered structure. The outer, sporopollenin-based exine provides protection and support to the pollen grain, while the inner intine, composed primarily of cellulose, is important for pollen germination. The formation of the mature pollen grain wall takes place within the anther with contributions of cell wall material from both the developing pollen grain as well as the surrounding cells of the tapetum. The process of wall development is complex; multiple cell wall polymers are deposited, some transiently, in a controlled sequence of events. Tomato ( Solanum lycopersicum ) is an important agricultural crop, which requires successful fertilization for fruit production as do many other members of the Solanaceae family. Despite the importance of pollen development for tomato, little is known about the detailed pollen gain wall developmental process. Here, we describe the structure of the tomato pollen wall and establish a developmental timeline of its formation. Mature tomato pollen is released from the anther in a dehydrated state and is tricolpate, with three long apertures without overlaying exine from which the pollen tube may emerge. Using histology and immunostaining, we determined the order in which key cell wall polymers were deposited with respect to overall pollen and anther development. Pollen development began in young flower buds when the premeiotic microspore mother cells (MMCs) began losing their cellulose primary cell wall. Following meiosis, the still conjoined microspores progressed to the tetrad stage characterized by a temporary, thick callose wall. Breakdown of the callose wall released the individual early microspores. Exine deposition began with the secretion of the sporopollenin foot layer. At the late microspore stage, exine deposition was completed and the tapetum degenerated. The pollen underwent mitosis to produce bicellular pollen; at which point, intine formation began, continuing through to pollen maturation. The entire cell wall development process was also punctuated by dynamic changes in pectin composition, particularly changes in methyl-esterified and de-methyl-esterified homogalacturonan.
more »
« less
- Award ID(s):
- 1755482
- PAR ID:
- 10316226
- Date Published:
- Journal Name:
- Frontiers in Plant Science
- Volume:
- 12
- ISSN:
- 1664-462X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Formation of pollen wall exine is preceded by the development of several transient layers of extracellular materials deposited on the surface of developing pollen grains. One such layer is primexine (PE), a thin, ephemeral structure that is present only for a short period of time and is difficult to visualize and study. Recent genetic studies suggested that PE is a key factor in the formation of exine, making it critical to understand its composition and the dynamics of its formation. In this study, we used high-pressure frozen/freeze-substituted samples of developing Arabidopsis (Arabidopsis thaliana) pollen for a detailed transmission electron microscopy analysis of the PE ultrastructure throughout the tetrad stage of pollen development. We also analyzed anthers from wild-type Arabidopsis and three mutants defective in PE formation by immunofluorescence, carefully tracing several carbohydrate epitopes in PE and nearby anther tissues during the tetrad and the early free-microspore stages. Our analyses revealed likely sites where these carbohydrates are produced and showed that the distribution of these carbohydrates in PE changes significantly during the tetrad stage. We also identified tools for staging tetrads and demonstrate that components of PE undergo changes resembling phase separation. Our results indicate that PE behaves like a much more dynamic structure than has been previously appreciated and clearly show that Arabidopsis PE creates a scaffolding pattern for formation of reticulate exine.more » « less
-
In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the β-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual β-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, and supporting computational modeling and simulation, to demonstrate that Arabidopsis (Arabidopsis thaliana) CSLD3 is a UDP-glucose-dependent β-1,4-glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6.more » « less
-
null (Ed.)The placenta of hornworts is unique among bryophytes in the restriction of transfer cells that are characterized by elaborate wall labyrinths to the gametophyte generation. During development, cells around the periphery of the sporophyte foot elongate, forming smooth-walled haustorial cells that interdigitate with gametophyte cells. Using immunogold labeling with 22 antibodies to diverse cell wall polymers, we examined compositional differences in the developmentally and morphologically distinct cell walls of gametophyte transfer cells and sporophyte haustorial cells in the placenta of Phaeoceros. As detected by Calcofluor White fluorescence, cellulose forms the cell wall scaffolding in cells on both sides of the placenta. Homogalacturonan (HG) and rhamnogalacturonan I (RG-I) pectins are abundant in both cell types, and haustorial cells are further enriched in methyl-esterified HGs. The abundance of pectins in placental cell walls is consistent with the postulated roles of these polymers in cell wall porosity and in maintaining an acidic apoplastic pH favorable to solute transport. Xyloglucan hemicellulose, but not mannans or glucuronoxylans, are present in cell walls at the interface between the two generations with a lower density in gametophytic wall ingrowths. Arabinogalactan proteins (AGPs) are diverse along the plasmalemma of placental cells and are absent in surrounding cells in both generations. AGPs in placental cell walls may play a role in calcium binding and release associated with signal transduction as has been speculated for these glycoproteins in other plants. Callose is restricted to thin areas in cell walls of gametophyte transfer cells. In contrast to studies of transfer cells in other systems, no reaction to the JIM12 antibody against extensin was observed in Phaeoceros.more » « less
-
null (Ed.)A robust spore wall was a key requirement for terrestrialization by early plants. Sporopollenin in spore and pollen grain walls is thought to be polymerized and cross-linked to other macromolecular components, partly through oxidative processes involving H 2 O 2 . Therefore, we investigated effects of scavengers of reactive oxygen species (ROS) on the formation of spore walls in the moss Physcomitrella patens (Hedw.) Bruch, Schimp & W. Gümbel. Exposure of sporophytes, containing spores in the process of forming walls, to ascorbate, dimethylthiourea, or 4-hydroxy-TEMPO prevented normal wall development in a dose, chemical, and stage-dependent manner. Mature spores, exposed while developing to a ROS scavenger, burst when mounted in water on a flat slide under a coverslip (a phenomenon we named “augmented osmolysis” because they did not burst in phosphate-buffered saline or in water on a depression slide). Additionally, the walls of exposed spores were more susceptible to alkaline hydrolysis than those of the control spores, and some were characterized by discontinuities in the exine, anomalies in perine spine structure, abnormal intine and aperture, and occasionally, wall shedding. Our data support the involvement of oxidative cross-linking in spore-wall development, including sporopollenin polymerization or deposition, as well as a role for ROS in intine/aperture development.more » « less
An official website of the United States government

