Enhanced electromagnetic fields within plasmonic nanocavity mode volumes enable multiple significant effects that lead to applications in both the linear and nonlinear optical regimes. In this work, enhanced second‐harmonic generation (SHG) is demonstrated from individual plasmonic nanopatch antennas (NPAs) which are formed by separating silver nanocubes from a smooth gold film using a sub‐10 nm zinc oxide spacer layer. When the NPAs are excited at their fundamental plasmon frequency, a 104‐fold increase in the intensity of the SHG wave is observed. Moreover, by integrating quantum emitters that have an absorption energy at the fundamental frequency, a second‐order nonlinear exciton–polariton strong coupling response is observed with a Rabi splitting energy of 19 meV. The nonlinear frequency conversion using NPAs thus provides an excellent platform for nonlinear control of the light−matter interactions in both weak and strong coupling regimes which will have a great potential for applications in optical engineering and information processing.
- Award ID(s):
- 1640986
- PAR ID:
- 10316228
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2192-8606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract New materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibility
χ (2)has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications. Here, we introduce a metal/dielectric heterostructured platform, i.e., TiN/Al2O3epitaxial multilayers, to overcome that limitation. This platform has an extremely highχ (2)of approximately 1500 pm/V at NIR frequencies. By combining the aforementioned heterostructure with the large electric field enhancement afforded by a nanostructured metasurface, the power efficiency of second harmonic generation (SHG) achieved 10−4at an incident pulse intensity of 10 GW/cm2, which is an improvement of several orders of magnitude compared to that of previous demonstrations from nonlinear surfaces at similar frequencies. The proposed quantum-engineered heterostructures enable efficient wave mixing at visible/NIR frequencies into ultracompact nonlinear optical devices. -
Broadband frequency comb generation through cascaded quadratic nonlinearity remains experimentally untapped in free-space cavities with bulk χ(2)materials mainly due to the high threshold power and restricted ability of dispersion engineering. Thin-film lithium niobate (LN) is a good platform for nonlinear optics due to the tight mode confinement in a nano-dimensional waveguide, the ease of dispersion engineering, large quadratic nonlinearities, and flexible phase matching via periodic poling. Here we demonstrate broadband frequency comb generation through dispersion engineering in a thin-film LN microresonator. Bandwidths of 150 nm (80 nm) and 25 nm (12 nm) for center wavelengths at 1560 and 780 nm are achieved, respectively, in a cavity-enhanced second-harmonic generation (doubly resonant optical parametric oscillator). Our demonstration paves the way for pure quadratic soliton generation, which is a great complement to dissipative Kerr soliton frequency combs for extended interesting nonlinear applications.
-
Abstract A preliminary measurement of the second‐order nonlinear optical susceptibility of symmetric, coupled, InAs/AlSb multiple quantum well (MQW) structures is acquired through optical second‐harmonic generation (SHG) at fundamental wavelength 1.55 µm. High quality crystalline MQW structures of variable thickness and corresponding bulk AlSb control samples are achieved using a digital alloy epitaxial growth technique that avoids cluster formation and phase segregation. All samples are grown in between a GaSb cap and substrate layer. To isolate SHG from the MQW (or control) layers of interest from cap and substrate contributions, a multilayer optical response matrix model is built and independently tested by accurately reproducing linear reflectivity spectra. While a simplified response matrix analysis of SHG based solely on bulk χ(2)s does not reproduce the distinct SHG responses of the two sets of samples, the inclusion of an additional interface SHG contribution leads to a successful fit of the data and implies . The results demonstrate a proof‐of‐concept quantification of χ(2)in symmetric MQWs and suggest the possibility of engineering χ(2)in these structures, particularly with the introduction of well asymmetries.
-
Abstract Atomically thin transition metal dichalcogenides (TMDs) in their excited states can serve as exceptionally small building blocks for active optical platforms. In this scheme, optical excitation provides a practical approach to control light‐TMD interactions via the photocarrier generation, in an ultrafast manner. Here, it is demonstrated that via a controlled generation of photocarriers the second‐harmonic generation (SHG) from a monolayer MoS2crystal can be substantially modulated up to ≈55% within a timeframe of ≈250 fs, a set of performance characteristics that showcases the promise of low‐dimensional materials for all‐optical nonlinear data processing. The combined experimental and theoretical study suggests that the large SHG modulation stems from the correlation between the second‐order dielectric susceptibility χ(2)and the density of photoexcited carriers in MoS2. Indeed, the depopulation of the conduction band electrons, at the vicinity of the high‐symmetry
K/K′ points of MoS2, suppresses the contribution of interband electronic transitions in the effective χ(2)of the monolayer crystal, enabling the all‐optical modulation of the SHG signal. The strong dependence of the second‐order optical response on the density of photocarriers reveals the promise of time‐resolved nonlinear characterization as an alternative route to monitoring carrier dynamics in excited states of TMDs.