- PAR ID:
- 10316296
- Date Published:
- Journal Name:
- NeuRIPS 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Recently, there has been significant progress in understanding the convergence and generalization properties of gradient-based methods for training overparameterized learning models. However, many aspects including the role of small random initialization and how the various parameters of the model are coupled during gradient-based updates to facilitate good generalization, remain largely mysterious. A series of recent papers have begun to study this role for non-convex formulations of symmetric Positive Semi-Definite (PSD) matrix sensing problems which involve reconstructing a low-rank PSD matrix from a few linear measurements. The underlying symmetry/PSDness is crucial to existing convergence and generalization guarantees for this problem. In this paper, we study a general overparameterized low-rank matrix sensing problem where one wishes to reconstruct an asymmetric rectangular low-rank matrix from a few linear measurements. We prove that an overparameterized model trained via factorized gradient descent converges to the low-rank matrix generating the measurements. We show that in this setting, factorized gradient descent enjoys two implicit properties: (1) coupling of the trajectory of gradient descent where the factors are coupled in various ways throughout the gradient update trajectory and (2) an algorithmic regularization property where the iterates show a propensity towards low-rank models despite the overparameterized nature of the factorized model. These two implicit properties in turn allow us to show that the gradient descent trajectory from small random initialization moves towards solutions that are both globally optimal and generalize well.more » « less
-
Many modern learning tasks involve fitting nonlinear models which are trained in an overparameterized regime where the parameters of the model exceed the size of the training dataset. Due to this overparameterization, the training loss may have infinitely many global minima and it is critical to understand the properties of the solutions found by first-order optimization schemes such as (stochastic) gradient descent starting from different initializations. In this paper we demonstrate that when the loss has certain properties over a minimally small neighborhood of the initial point, first order methods such as (stochastic) gradient descent have a few intriguing properties: (1) the iterates converge at a geometric rate to a global optima even when the loss is nonconvex, (2) among all global optima of the loss the iterates converge to one with a near minimal distance to the initial point, (3) the iterates take a near direct route from the initial point to this global optimum. As part of our proof technique, we introduce a new potential function which captures the tradeoff between the loss function and the distance to the initial point as the iterations progress. The utility of our general theory is demonstrated for a variety of problem domains spanning low-rank matrix recovery to shallow neural network training.more » « less
-
We show that there are no spurious local minima in the non-convex factorized parametrization of low-rank matrix recovery from incoherent linear measurements. With noisy measurements we show all local minima are very close to a global optimum. Together with a curvature bound at saddle points, this yields a polynomial time global convergence guarantee for stochastic gradient descent from random initialization.more » « less
-
Abstract Overparameterized models may have many interpolating solutions; implicit regularization refers to the hidden preference of a particular optimization method towards a certain interpolating solution among the many. A by now established line of work has shown that (stochastic) gradient descent tends to have an implicit bias towards low rank and/or sparse solutions when used to train deep linear networks, explaining to some extent why overparameterized neural network models trained by gradient descent tend to have good generalization performance in practice. However, existing theory for square-loss objectives often requires very small initialization of the trainable weights, which is at odds with the larger scale at which weights are initialized in practice for faster convergence and better generalization performance. In this paper, we aim to close this gap by incorporating and analysing gradient flow (continuous-time version of gradient descent) with weight normalization, where the weight vector is reparameterized in terms of polar coordinates, and gradient flow is applied to the polar coordinates. By analysing key invariants of the gradient flow and using Lojasiewicz’s Theorem, we show that weight normalization also has an implicit bias towards sparse solutions in the diagonal linear model, but that in contrast to plain gradient flow, weight normalization enables a robust bias that persists even if the weights are initialized at practically large scale. Experiments suggest that the gains in both convergence speed and robustness of the implicit bias are improved dramatically using weight normalization in overparameterized diagonal linear network models.
-
An extensively studied phenomenon of the past few years in training deep networks is the implicit bias of gradient descent towards parsimonious solutions. In this work, we further investigate this phenomenon by narrowing our focus to deep matrix factorization, where we reveal surprising low-dimensional structures in the learning dynamics when the target matrix is low-rank. Specifically, we show that the evolution of gradient descent starting from arbitrary orthogonal initialization only affects a minimal portion of singular vector spaces across all weight matrices. In other words, the learning process happens only within a small invariant subspace of each weight matrix, despite the fact that all parameters are updated throughout training. From this, we provide rigorous justification for low-rank training in a specific, yet practical setting. In particular, we demonstrate that we can construct compressed factorizations that are equivalent to full-width, deep factorizations throughout training for solving low-rank matrix completion problems efficiently.more » « less