skip to main content


Title: A Technique for High-Speed Microscopic Imaging of Dynamic Failure Events and Its Application to Shear Band Initiation in Polycarbonate
Abstract An experimental technique is reported, which can image the deformation fields associated with dynamic failure events at high spatial and temporal resolutions simultaneously. The technique is demonstrated at a spatial resolution of ∼1 µm and a temporal resolution of 250 ns, while maintaining a relatively large field of view (≈1.11 mm × 0.63 mm). As a demonstration, the technique is used to image the deformation field near a notch tip during initiation of a shear instability in polycarbonate. An ordered array of 10 µm diameter speckles with 20 µm pitch, and deposited on the specimen surface near the notch tip helps track evolution of the deformation field. Experimental results show that the width of the shear band (SB) in polycarbonate is approximately 75 µm near the notch tip within resolution limits of the experiments. The measurements also reveal formation of two incipient localization bands near the crack tip, one of which subsequently becomes the dominant band while the other is suppressed. Computational simulation of the experiment was conducted using a thermomechanically coupled rate-dependent constitutive model of polycarbonate to gain further insight into the experimental observations enabled by the combination of high spatial and temporal resolutions. The simulation results show reasonable agreement with the experimentally observed kinematic field and features near the notch tip, while also pointing to the need for further refinement of constitutive models that are calibrated at high strain rates (∼105/s) and also account for damage evolution.  more » « less
Award ID(s):
1825582
NSF-PAR ID:
10316335
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
89
Issue:
4
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogels are a class of soft, highly deformable materials formed by swelling a network of polymer chains in water. With mechanical properties that mimic biological materials, hydrogels are often proposed for load bearing biomedical or other applications in which their deformation and failure properties will be important. To study the failure of such materials a means for the measurement of deformation fields beyond simple uniaxial tension tests is required. As a non-contact, full-field deformation measurement method, Digital Image Correlation (DIC) is a good candidate for such studies. The application of DIC to hydrogels is studied here with the goal of establishing the accuracy of DIC when applied to hydrogels in the presence of large strains and large strain gradients. Experimental details such as how to form a durable speckle pattern on a material that is 90% water are discussed. DIC is used to measure the strain field in tension loaded samples containing a central hole, a circular edge notch and a sharp crack. Using a nonlinear, large deformation constitutive model, these experiments are modeled using the finite element method (FEM). Excellent agreement between FEM and DIC results for all three geometries shows that the DIC measurements are accurate up to strains of over 10, even in the presence of very high strain gradients near a crack tip. The method is then applied to verify a theoretical prediction that the deformation field in a cracked sample under relaxation loading, i.e. constant applied boundary displacement, is stationary in time even as the stress relaxes by a factor of three. 
    more » « less
  2. null (Ed.)
    Fracturing in brittle rocks exhibits a significant nonlinear region surrounding the crack tip called the fracture process zone (FPZ). In this study, the evolution of the FPZ under pure mode II loading using notched deep beam under three-point loading was investigated. The experimental setup included the simultaneous monitoring of surface deformation using the two-dimensional digital image correlation technique to characterize various crack characteristics such as its type and FPZ evolution in Barre granite specimens. Both displacement and strain approaches of the two-dimensional digital image correlation were used to identify the mode of fracture under pure mode II loading. Both approaches showed that the crack initiation occur under mode I despite the pure mode II loading at the notch tip. The displacement approach was used for characterizing the evolution of the FPZ which analyzed the crack tip opening displacement and crack tip sliding displacement to identify the transition between the three stages of FPZ evolution, namely, (a) elastic stage, (b) formation of the FPZ, and (c) the macro-crack initiation. The results showed that the evolution of the FPZ of mode I fracture under pure mode II loading is similar to cases of pure mode I loading of the same rock. 
    more » « less
  3. ABSTRACT:

    Due to rock mass being commonly subjected to compressive or shear loading, the mode II fracture toughness is an important material parameter for rocks. Fracturing in rocks is governed by the behavior of a nonlinear region surrounding the crack tip called the fracture process zone (FPZ). However, the characteristics of mode II fracture are still determined based on the linear elastic fracture mechanics (LEFM), which assumes that a pure mode II loading results in a pure mode II fracture. In this study, the FPZ development in Barre granite specimens under mode II loading was investigated using the short beam compression (SBC) test. Additionally, the influence of lateral confinement on various characteristics of mode II fracture was studied. The experimental setup included the simultaneous monitoring of surface deformation using the two-dimensional digital image correlation technique (2D-DIC) to identify fracture mode and characterize the FPZ evolution in Barre granite specimens. The 2D-DIC analysis showed a dominant mixed-mode I/II fracture in the ligament between two notches, irrespective of confinement level on the SBC specimens. The influence of confinement on the SBC specimens was assessed by analyzing the evolution of crack displacement and changes in value of mode II fracture toughness. Larger levels of damage in confined specimens were observed prior to the failure than the unconfined specimens, indicating an increase in the fracture resistance and therefore mode II fracture toughness with the confining stress.

    1. INTRODUCTION

    The fracturing in laboratory-scale rock specimens is often characterized by the deformation of the inelastic region surrounding the crack tips, also known as the fracture process zone (FPZ) (Backers et al., 2005; Ghamgosar and Erarslan, 2016). While the influence of the FPZ on mode I fracture in rocks has been extensively investigated, there are limited studies on FPZ development in rocks under pure mode II loading (Ji et al., 2016; Lin et al., 2020; Garg et al., 2021; Li et al., 2021).

     
    more » « less
  4. null (Ed.)
    By direct measurements of the gas temperature, the Atacama Large Millimeter/submillimeter Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here, we present an overview of the brightness-temperature fluctuations from several high-quality and high-temporal-resolution (i.e. 1 and 2 s cadence) time series of images obtained during the first 2 years of solar observations with ALMA, in Band 3 and Band 6, centred at around 3 mm (100 GHz) and 1.25 mm (239 GHz), respectively. The various datasets represent solar regions with different levels of magnetic flux. We perform fast Fourier and Lomb–Scargle transforms to measure both the spatial structuring of dominant frequencies and the average global frequency distributions of the oscillations (i.e. averaged over the entire field of view). We find that the observed frequencies significantly vary from one dataset to another, which is discussed in terms of the solar regions captured by the observations (i.e. linked to their underlying magnetic topology). While the presence of enhanced power within the frequency range 3–5 mHz is found for the most magnetically quiescent datasets, lower frequencies dominate when there is significant influence from strong underlying magnetic field concentrations (present inside and/or in the immediate vicinity of the observed field of view). We discuss here a number of reasons which could possibly contribute to the power suppression at around 5.5 mHz in the ALMA observations. However, it remains unclear how other chromospheric diagnostics (with an exception of H α line-core intensity) are unaffected by similar effects, i.e. they show very pronounced 3-min oscillations dominating the dynamics of the chromosphere, whereas only a very small fraction of all the pixels in the 10 ALMA datasets analysed here show peak power near 5.5 mHz. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’. 
    more » « less
  5. Abstract

    The 2019 Ridgecrest conjugate Mw6.4 and Mw7.1 events resulted in several meters of strike‐slip and dip‐slip along an intricate rupture, extending from the surface down to 15 km. Now with >2 years of post‐rupture observations, we utilize these results to better understand vertical postseismic deformation from the Ridgecrest sequence and illuminate the emerging significance of vertical earthquake cycle deformation data. We determine the cumulative vertical displacement observed by the continuous GNSS network since Ridgecrest, which requires additional time series analyses to adequately resolve vertical deformation compared to the horizontal. Using a Maxwell‐type viscoelastic relaxation model, with a best fit time‐averaged asthenosphere viscosity of 4e17 Pa·s and a laterally heterogeneous lithosphere, we find that viscoelastic relaxation accounts for a majority of the cumulative vertical deformation at Ridgecrest and strongly controls far‐field observations in all north‐east‐up components. The viscoelastic model alone generally underpredicts deformation from GNSS and the remaining nonviscoelastic displacement is most prominent in the horizontal near‐field (−16 to 19 mm), revealing a deformation pattern matching the coseismic observations. This suggests that multiple deformation mechanisms are contributing to Ridgecrest's postseismic displacement, where afterslip likely dominates the near‐field while viscoelastic relaxation controls the far‐field. Similar deformation at individual GNSS stations has been observed for past earthquakes and additionally reveals long‐term transient viscosity over several years. Moreover, the greater temporal and spatial resolution of the GNSS array for Ridgecrest will help resolve the evolution of deformation for the entire network of observations as regional postseismic deformation persists for the next several years.

     
    more » « less