skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 8, 2026

Title: Grid independence studies applied to a field‐scale computational fluid dynamic (CFD) model using the detached eddy simulation (DES) technique along a reach of the Colorado River in Marble Canyon
Abstract Grid independence studies have emerged as essential methodological frameworks for comprehending the impact of domain resolution on simulating anisotropic turbulence at the river‐reach scale using large eddy simulation models. This study proposes a methodology to assess the loss of information in turbulent flow patterns when coarsening the computational domain, examined in a 1‐km transect of the Colorado River along Marble Canyon. Seven computational domain resolutions are explored to analyse the sensitivity of turbulent flow to spatial resolution changes, utilizing the turbulent kinetic energy (TKE) spectrum technique and spatiotemporal analysis of eddy structures via statistical metrics such as root mean square error (RMSE), Kullback‐Leibler (KL) divergence, Nash‐Sutcliffe model efficiency coefficient (NSE), wavelet power spectrum and grid convergence index (GCI). Based on physical principles and statistics, these metrics quantify information loss and assess domain resolutions. A computational fluid dynamic (CFD) model is developed by employing the detached eddy simulation (DES) technique, with boundary condition (BC) integrating the rough wall extension of the Spallart‐Allmaras model in cells near the bed. Evaluation of domain resolutions aims to identify grid cell sizes capturing flow behaviour and hydraulic characteristics, including primary and secondary flows, return currents, shear layers and primary and secondary eddies. The study observes an increase in data representation of the TKE spectrum with finer spatial domain resolution. Additionally, surface analysis, conducted via RMSE, KL and NSE metrics, identifies specific areas within the flow field showing high sensitivity to refining the grid cell sizes.  more » « less
Award ID(s):
2239550 2329485
PAR ID:
10576212
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
50
Issue:
3
ISSN:
0197-9337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a computational framework for simulating the self-similar regime of turbulent Rayleigh–Taylor (RT) mixing layers in a statistically stationary manner. By leveraging the anticipated self-similar behaviour of RT mixing layers, a transformation of the vertical coordinate and velocities is applied to the Navier–Stokes equations (NSE), yielding modified equations that resemble the original NSE but include two sets of additional terms. Solving these equations, a statistically stationary RT (SRT) flow is achieved. Unlike temporally growing Rayleigh–Taylor (TRT) flow, SRT flow is independent of initial conditions and can be simulated over infinite simulation time without escalating resolution requirements, hence guaranteeing statistical convergence. Direct numerical simulations (DNS) are performed at an Atwood number of 0.5 and unity Schmidt number. By varying the ratio of the mixing layer height to the domain width, a minimal flow unit of aspect ratio 1.5 is found to approximate TRT turbulence in the self-similar mode-coupling regime. The SRT minimal flow unit has one-sixteenth the number of grid points required by the equivalent TRT simulation of the same Reynolds number and grid resolution. The resultant flow corresponds to a theoretical limit where self-similarity is observed in all fields and across the entire spatial domain – a late-time state that existing experiments and DNS of TRT flow have difficulties attaining. Simulations of the SRT minimal flow unit span TRT-equivalent Reynolds numbers (based on mixing layer height) ranging from 500 to 10 800. The SRT results are validated against TRT data from this study as well as from Cabot & Cook (Nat. Phys., vol. 2, 2006, pp. 562–568). 
    more » « less
  2. Idealized large-eddy simulations of shallow convection often utilize horizontally periodic computational domains. The development of precipitation in shallow cumulus convection changes the spatial structure of convection and creates large-scale organization. However, the limited periodic domain constrains the horizontal variability of the atmospheric boundary layer. Small computational domains cannot capture the mesoscale boundary layer organization and artificially constrain the horizontal convection structure. The effects of the horizontal domain size on large-eddy simulations of shallow precipitating cumulus convection are investigated using four computational domains, ranging from 40×40km2 to 320×320km2 and fine grid resolution (40 m). The horizontal variability of the boundary layer is captured in computational domains of 160×160km2. Small LES domains (≤40 km) cannot reproduce the mesoscale flow features, which are about 100km long, but the boundary layer mean profiles are similar to those of the larger domains. Turbulent fluxes, temperature and moisture variances, and horizontal length scales are converged with respect to domain size for domains equal to or larger than 160×160km2. Vertical velocity flow statistics, such as variance and spectra, are essentially identical in all domains and show minor dependence on domain size. Characteristic horizontal length scales (i.e., those relating to the mesoscale organization) of horizontal wind components, temperature and moisture reach an equilibrium after about hour 30. 
    more » « less
  3. Abstract Because of their limited spatial resolution, numerical weather prediction and climate models have to rely on parameterizations to represent atmospheric turbulence and convection. Historically, largely independent approaches have been used to represent boundary layer turbulence and convection, neglecting important interactions at the subgrid scale. Here we build on an eddy‐diffusivity mass‐flux (EDMF) scheme that represents all subgrid‐scale mixing in a unified manner, partitioning subgrid‐scale fluctuations into contributions from local diffusive mixing and coherent advective structures and allowing them to interact within a single framework. The EDMF scheme requires closures for the interaction between the turbulent environment and the plumes and for local mixing. A second‐order equation for turbulence kinetic energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving a mixing length to be parameterized. Here, we propose a new mixing length formulation, based on constraints derived from the TKE balance. It expresses local mixing in terms of the same physical processes in all regimes of boundary layer flow. The formulation is tested at a range of resolutions and across a wide range of boundary layer regimes, including a stably stratified boundary layer, a stratocumulus‐topped marine boundary layer, and dry convection. Comparison with large eddy simulations (LES) shows that the EDMF scheme with this diffusive mixing parameterization accurately captures the structure of the boundary layer and clouds in all cases considered. 
    more » « less
  4. Understanding the two-way interactions between finite-size solid particles and a wall-bounded turbulent flow is crucial in a variety of natural and engineering applications. Previous experimental measurements and particle-resolved direct numerical simulations revealed some interesting phenomena related to particle distribution and turbulence modulation, but their in-depth analyses are largely missing. In this study, turbulent channel flows laden with neutrally buoyant finite-size spherical particles are simulated using the lattice Boltzmann method. Two particle sizes are considered, with diameters equal to 14.45 and 28.9 wall units. To understand the roles played by the particle rotation, two additional simulations with the same particle sizes but no particle rotation are also presented for comparison. Particles of both sizes are found to form clusters. Under the Stokes lubrication corrections, small particles are found to have a stronger preference to form clusters, and their clusters orientate more in the streamwise direction. As a result, small particles reduce the mean flow velocity less than large particles. Particles are also found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall-normal direction, as well as a more isotropic distribution of TKE among different spatial directions. To understand these turbulence modulation phenomena, we analyse in detail the total and component-wise volume-averaged budget equations of TKE with the simulation data. This budget analysis reveals several mechanisms through which the particles modulate local and global TKE in the particle-laden turbulent channel flow. 
    more » « less
  5. null (Ed.)
    Abstract Numerical simulations for computational hemodynamics in clinical settings require a combination of many ingredients, mathematical models, solvers and patient-specific data. The sensitivity of the solutions to these factors may be critical, particularly when we have a partial or noisy knowledge of data. Uncertainty quantification is crucial to assess the reliability of the results. We present here an extensive sensitivity analysis in aortic flow simulations, to quantify the dependence of clinically relevant quantities to the patient-specific geometry and the inflow boundary conditions. Geometry and inflow conditions are generally believed to have a major impact on numerical simulations. We resort to a global sensitivity analysis, (i.e., not restricted to a linearization around a working point), based on polynomial chaos expansion (PCE) and the associated Sobol' indices. We regard the geometry and the inflow conditions as the realization of a parametric stochastic process. To construct a physically consistent stochastic process for the geometry, we use a set of longitudinal-in-time images of a patient with an abdominal aortic aneurysm (AAA) to parametrize geometrical variations. Aortic flow is highly disturbed during systole. This leads to high computational costs, even amplified in a sensitivity analysis -when many simulations are needed. To mitigate this, we consider here a large Eddy simulation (LES) model. Our model depends in particular on a user-defined parameter called filter radius. We borrowed the tools of the global sensitivity analysis to assess the sensitivity of the solution to this parameter too. The targeted quantities of interest (QoI) include: the total kinetic energy (TKE), the time-average wall shear stress (TAWSS), and the oscillatory shear index (OSI). The results show that these indexes are mostly sensitive to the geometry. Also, we find that the sensitivity may be different during different instants of the heartbeat and in different regions of the domain of interest. This analysis helps to assess the reliability of in silico tools for clinical applications. 
    more » « less