IoT (Internet of Things) devices such as sensors have been actively used in 'fogs' to provide critical data during e.g., disaster response scenarios or in-home healthcare. Since IoT devices typically operate in resource-constrained computing environments at the network-edge, data transfer performance to the cloud as well as end-to-end security have to be robust and customizable. In this paper, we present the design and implementation of a middleware featuring "intermittent" and "flexible" end-to-end security for cloud-fog communications. Intermittent security copes with unreliable network connections, and flexibility is achieved through security configurations that are tailored to application needs. Our experiment results show how our middleware that leverages static pre-shared keys forms a promising solution for delivering light-weight, fast and resource-aware security for a variety of IoT-based applications.
more »
« less
PrioDeX: A Data Exchange Middleware for Efficient Event Prioritization in SDN-Based IoT Systems
Real-time event detection and targeted decision making for emerging mission-critical applications require systems that extract and process relevant data from IoT sources in smart spaces. Oftentimes, this data is heterogeneous in size, relevance, and urgency, which creates a challenge when considering that different groups of stakeholders (e.g., first responders, medical staff, government officials, etc.) require such data to be delivered in a reliable and timely manner. Furthermore, in mission-critical settings, networks can become constrained due to lossy channels and failed components, which ultimately add to the complexity of the problem. In this article, we propose PrioDeX, a cross-layer middleware system that enables timely and reliable delivery of mission-critical data from IoT sources to relevant consumers through the prioritization of messages. It integrates parameters at the application, network, and middleware layers into a data exchange service that accurately estimates end-to-end performance metrics through a queueing analytical model. PrioDeX proposes novel algorithms that utilize the results of this analysis to tune data exchange configurations (event priorities and dropping policies), which is necessary for satisfying situational awareness requirements and resource constraints. PrioDeX leverages Software-Defined Networking (SDN) methodologies to enforce these configurations in the IoT network infrastructure. We evaluate our approach using both simulated and prototype-based experiments in a smart building fire response scenario. Our application-aware prioritization algorithm improves the value of exchanged information by 36% when compared with no prioritization; the addition of our network-aware drop rate policies improves this performance by 42% over priorities only and by 94% over no prioritization.
more »
« less
- Award ID(s):
- 2008993
- PAR ID:
- 10316346
- Date Published:
- Journal Name:
- ACM Transactions on Internet of Things
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2691-1914
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Internet of Things (IoT) is a connected network of devices that exchange data using different protocols. The application of IoT ranges from intelligent TVs and intelligent Refrigerators to smart Transportation. This research aims to provide students with hands-on training on how to develop an IoT platform that supports device management, connectivity, and data management. People tend to build interconnected devices without having a basic understanding of how the IoT platform backend function. Studying the Arm Pelion will help to understand how IoT devices operate under the hood. This past summer, Morgan State University has hosted undergraduate engineering students and high school STEM teachers to conduct IoT security research in the Cybersecurity Assurance & Policy (CAP) Center. The research project involved integrating various hardware sensor devices and real-time data monitoring using the Arm Pelion IoT development platform. Some of the student/teacher outcomes from the project include: 1) Learning about IoT Technology and security; 2) Programming an embedded system using Arm Mbed development board and IDE; 3 3) Developing a network of connected IoT devices using different protocols such as LWM2M, MQTT, CoAP; 4) Investigating the cybersecurity risks associated with the platform; and 5) Using data analysis and visualization to understand the network data and packet flow. First, the student/teacher must consider the IoT framework to understand how to address the security. The IoT framework describes the essential functions of an IoT network, breaking it down into separate layers. These layers include an application layer, middleware layer, and connectivity layer. The application layer allows the users to access the platform via a smartphone or any other dashboard. The Middleware layer represents the backend system that provides edge devices with data management, messaging, application services, and authentication. Finally, the connectivity layer includes devices that connect the user to the network, including Bluetooth or WiFi. The platform consists of several commercial IoT devices such as a smart camera, baby monitor, smart light, and other devices. We then create algorithms to classify the network data flow; to visualize the packets flow in the network and the structure of the packets data frame over time.more » « less
-
Recent Internet-of-Things (IoT) networks span across a multitude of stationary and robotic devices, namely unmanned ground vehicles, surface vessels, and aerial drones, to carry out mission-critical services such as search and rescue operations, wildfire monitoring, and flood/hurricane impact assessment. Achieving communication synchrony, reliability, and minimal communication jitter among these devices is a key challenge both at the simulation and system levels of implementation due to the underpinning differences between a physics-based robot operating system (ROS) simulator that is time-based and a network-based wireless simulator that is event-based, in addition to the complex dynamics of mobile and heterogeneous IoT devices deployed in a real environment. Nevertheless, synchronization between physics (robotics) and network simulators is one of the most difficult issues to address in simulating a heterogeneous multi-robot system before transitioning it into practice. The existing TCP/IP communication protocol-based synchronizing middleware mostly relied on Robot Operating System 1 (ROS1), which expends a significant portion of communication bandwidth and time due to its master-based architecture. To address these issues, we design a novel synchronizing middleware between robotics and traditional wireless network simulators, relying on the newly released real-time ROS2 architecture with a master-less packet discovery mechanism. Additionally, we propose a ground and aerial agents’ velocity-aware customized QoS policy for Data Distribution Service (DDS) to minimize the packet loss and transmission latency between a diverse set of robotic agents, and we offer the theoretical guarantee of our proposed QoS policy. We performed extensive network performance evaluations both at the simulation and system levels in terms of packet loss probability and average latency with line-of-sight (LOS) and non-line-of-sight (NLOS) and TCP/UDP communication protocols over our proposed ROS2-based synchronization middleware. Moreover, for a comparative study, we presented a detailed ablation study replacing NS-3 with a real-time wireless network simulator, EMANE, and masterless ROS2 with master-based ROS1. Our proposed middleware attests to the promise of building a largescale IoT infrastructure with a diverse set of stationary and robotic devices that achieve low-latency communications (12% and 11% reduction in simulation and reality, respectively) while satisfying the reliability (10% and 15% packet loss reduction in simulation and reality, respectively) and high-fidelity requirements of mission-critical applications.more » « less
-
An emerging trend in Internet of Things (IoT) applications is to move the computation (cyber) closer to the source of the data (physical). This paradigm is often referred to as edge computing. If edge resources are pooled together they can be used as decentralized shared resources for IoT applications, providing increased capacity to scale up computations and minimize end-to-end latency. Managing applications on these edge resources is hard, however, due to their remote, distributed, and (possibly) dynamic nature, which necessitates autonomous management mechanisms that facilitate application deployment, failure avoidance, failure management, and incremental updates. To address these needs, we present CHARIOT, which is orchestration middleware capable of autonomously managing IoT systems consisting of edge resources and applications. CHARIOT implements a three-layer architecture. The topmost layer comprises a system description language, the middle layer comprises a persistent data storage layer and the corresponding schema to store system information, and the bottom layer comprises a management engine that uses information stored persistently to formulate constraints that encode system properties and requirements, thereby enabling the use of Satisfiability Modulo Theories (SMT) solvers to compute optimal system (re)configurations dynamically at runtime. This paper describes the structure and functionality of CHARIOT and evaluates its efficacy as the basis for a smart parking system case study that uses sensors to manage parking spacesmore » « less
-
Reinforcement learning (RL) presents numerous benefits compared to rule-based approaches in various applications. Privacy concerns have grown with the widespread use of RL trained with privacy- sensitive data in IoT devices, especially for human-in-the-loop systems. On the one hand, RL methods enhance the user experience by trying to adapt to the highly dynamic nature of humans. On the other hand, trained policies can leak the user’s private information. Recent attention has been drawn to designing privacy-aware RL algorithms while maintaining an acceptable system utility. A central challenge in designing privacy-aware RL, especially for human-in-the-loop systems, is that humans have intrinsic variability, and their preferences and behavior evolve. The effect of one privacy leak mitigation can differ for the same human or across different humans over time. Hence, we can not design one fixed model for privacy-aware RL that fits all. To that end, we propose adaPARL, an adaptive approach for privacy-aware RL, especially for human-in-the-loop IoT systems. adaPARL provides a personalized privacy-utility trade-off depend- ing on human behavior and preference. We validate the proposed adaPARL on two IoT applications, namely (i) Human-in-the-Loop Smart Home and (ii) Human-in-the-Loop Virtual Reality (VR) Smart Classroom. Results obtained on these two applications validate the generality of adaPARL and its ability to provide a personalized privacy-utility trade-off. On average, adaPARL improves the utility by 57% while reducing the privacy leak by 23% on average.more » « less
An official website of the United States government

