The problem of comparing database instances with incom- pleteness is prevalent in applications such as analyzing how a dataset has evolved over time (e.g., data versioning), evaluating data cleaning solutions (e.g., compare an instance produced by a data repair algorithm against a gold standard), or comparing solu- tions generated by data exchange systems (e.g., universal vs core solutions). In this work, we propose a framework for computing similarity of instances with labeled nulls, even of those without primary keys. As a side-effect, the similarity score computation returns a mapping between the instances’ tuples, which explains the score. We demonstrate that computing the similarity of two incomplete instances is NP-hard in the instance size in general. To be able to compare instances of realistic size, we present an approximate PTIME algorithm for instance comparison. Exper- imental results demonstrate that the approximate algorithm is up to three orders of magnitude faster than an exact algorithm for the computation of the similarity score, while the difference between approximate and exact scores is always smaller than 1%.
more »
« less
TQEL: framework for query-driven linking of top-k entities in social media blogs
Social media analysis over blogs (such as tweets) often requires determining top-k mentions of a certain category (e.g., movies) in a collection (e.g., tweets collected over a given day). Such queries require entity linking (EL) function to be executed that is often expensive. We propose TQEL, a framework that minimizes the joint cost of EL calls and top-k query processing. The paper presents two variants - TQEL-exact and TQEL-approximate that retrieve the exact / approximate top-k results. TQEL-approximate, using a weaker stopping condition, achieves significantly improved performance (with the fraction of the cost of TQEL-exact) while providing strong probabilistic guarantees (over 2 orders of magnitude lower EL calls with 95% confidence threshold compared to TQEL-exact). TQEL-exact itself is orders of magnitude better compared to a naive approach that calls EL functions on the entire dataset.
more »
« less
- PAR ID:
- 10316349
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 2150-8097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large pretrained models can be used as annotators, helping replace or augment crowdworkers and enabling distilling generalist models into smaller specialist models. Unfortunately, this comes at a cost: employing top-of-the-line models often requires paying thousands of dollars for API calls, while the resulting datasets are static and challenging to audit. To address these challenges, we propose a simple alternative: rather than directly querying labels from pretrained models, we task models to generate programs that can produce labels. These programs can be stored and applied locally, re-used and extended, and cost orders of magnitude less. Our system, Alchemist, obtains comparable to or better performance than large language model-based annotation in a range of tasks for a fraction of the cost: on average, improvements amount to a 12.9% enhancement while the total labeling costs across all datasets are reduced by a factor of approximately 500×. We release our code here: https://github.com/SprocketLab/Alchemistmore » « less
-
Pattern counting in graphs is fundamental to several network sci- ence tasks, and there is an abundance of scalable methods for estimating counts of small patterns, often called motifs, in large graphs. However, modern graph datasets now contain richer structure, and incorporating temporal information in particular has become a key part of network analysis. Consequently, temporal motifs, which are generalizations of small subgraph patterns that incorporate temporal ordering on edges, are an emerging part of the network analysis toolbox. However, there are no algorithms for fast estimation of temporal motifs counts; moreover, we show that even counting simple temporal star motifs is NP-complete. Thus, there is a need for fast and approximate algorithms. Here, we present the first frequency estimation algorithms for counting temporal motifs. More specifically, we develop a sampling framework that sits as a layer on top of existing exact counting algorithms and enables fast and accurate memory-efficient estimates of temporal motif counts. Our results show that we can achieve one to two orders of magnitude speedups over existing algorithms with minimal and controllable loss in accuracy on a number of datasets.more » « less
-
Butterflies are the smallest non-trivial subgraph in bipartite graphs, and therefore having efficient computations for analyzing them is crucial to improving the quality of certain applications on bipartite graphs. In this paper, we design a framework called ParButterfly that contains new parallel algorithms for the following problems on processing butterflies: global counting, per-vertex counting, per-edge counting, tip decomposition (vertex peeling), and wing decomposition (edge peeling). The main component of these algorithms is aggregating wedges incident on subsets of vertices, and our framework supports different methods for wedge aggregation, including sorting, hashing, histogramming, and batching. In addition, ParButterfly supports different ways of ranking the vertices to speed up counting, including side ordering, approximate and exact degree ordering, and approximate and exact complement coreness ordering. For counting, ParButterfly also supports both exact computation as well as approximate computation via graph sparsification. We prove strong theoretical guarantees on the work and span of the algorithms in ParButterfly. We perform a comprehensive evaluation of all of the algorithms in ParButterfly on a collection of real-world bipartite graphs using a 48-core machine. Our counting algorithms obtain significant parallel speedup, outperforming the fastest sequential algorithms by up to 13.6× with a self-relative speedup of up to 38.5×. Compared to general subgraph counting solutions, we are orders of magnitude faster. Our peeling algorithms achieve self-relative speedups of up to 10.7× and outperform the fastest sequential baseline by up to several orders of magnitude.more » « less
-
Chaudhuri, Kamalika and (Ed.)Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab (S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George & McCulloch (1993). For a dataset with n observations and p covariates, S^3 has order max{n^2 p_t, np} computational cost at iteration t where p_t never exceeds the number of covariates switching spike-and-slab states between iterations t and t-1 of the Markov chain. This improves upon the order n^2 p per-iteration cost of state-of-the-art implementations as, typically, p_t is substantially smaller than p. We apply S^3 on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost.more » « less
An official website of the United States government

