NAND flash-based Solid State Devices (SSDs) offer the desirable features of high performance, energy efficiency, and fast growing capacity. Thus, the use of SSDs is increasing in distributed storage systems. A key obstacle in this context is that the natural unbalance in distributed I/O workloads can result in wear imbalance across the SSDs in a distributed setting. This, in turn can have significant impact on the reliability, performance, and lifetime of the storage deployment. Extant load balancers for storage systems do not consider SSD wear imbalance when placing data, as the main design goal of such balancers is to extractmore »
This content will become publicly available on February 28, 2023
Reprogramming 3D TLC Flash Memory based Solid State Drives
NAND flash memory-based SSDs have been widely adopted. The scaling of SSD has evolved from plannar (2D) to 3D stacking. For reliability and other reasons, the technology node in 3D NAND SSD is larger than in 2D, but data density can be increased via increasing bit-per-cell. In this work, we develop a novel reprogramming scheme for TLCs in 3D NAND SSD, such that a cell can be programmed and reprogrammed several times before it is erased. Such reprogramming can improve the endurance of a cell and the speed of programming, and increase the amount of bits written in a cell per program/erase cycle, i.e., effective capacity. Our work is the first to perform a real 3D NAND SSD test to validate the feasibility of the reprogram operation. From the collected data, we derive the restrictions of performing reprogramming due to reliability challenges. Furthermore, a reprogrammable SSD (ReSSD) is designed to structure reprogram operations. ReSSD is evaluated in a case study in RAID 5 system (RSS-RAID). Experimental results show that RSS-RAID can improve the endurance by 35.7%, boost write performance by 15.9%, and increase effective capacity by 7.71%, with negligible overhead compared with conventional 3D SSD-based RAID 5 system.
- Publication Date:
- NSF-PAR ID:
- 10316354
- Journal Name:
- ACM Transactions on Storage
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1553-3077
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance andmore »
-
Solid State Drives (SSD) compete with Hard Disk Drives (HDD) in the data storage market. Recent advances in SSD capacity/cost have come from arranging the flash memory cells not just on the 2D surface but from also stacking many cells vertically through the 3rd dimension. The same option has not been seen as a practical approach for HDD technology that is based on magnetic recording. Data can only be written to and read from just above the surface of the medium, and any data on additional layers deeper in the medium is profoundly affected by the additional spacing and lossmore »
-
Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amorphous phase of PCM cells increase (drift) in time following a power law [1] , which increases the memory window in time but limits in the implementation of multi-bit-per-cell PCM. There has been a number of theories explaining the origin of drift [1] - [4] , mostly attributing it to structural relaxation, a thermallymore »
-
2938 Using a Human Liver Tissue Equivalent (hLTE) Platform to Define the Functional Impact of Liver-Directed AAV Gene Therapy 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster II Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Clinically Relevant, Diseases, Gene Therapy, Therapies Sunday, December 12, 2021, 6:00 PM-8:00 PM Ritu M Ramamurthy1*, Wen Ting Zheng2*, Sunil George, PhD1*, Meimei Wan1*, Yu Zhou, PhD1*, Baisong Lu, PhD1*, Colin E Bishop, PhD1*, Anthony Atala, M.D.1*, Christopher D Porada, PhD1*more »