skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 28, 2026

Title: Page-Overwrite Data Sanitization in 3D NAND Flash: Challenges, Feasibility, and the PULSE Solution
Instant data deletion (or sanitization) in NAND flash devices is essential for achieving data privacy, but it remains challenging due to the mismatch between erase and write granularities, which leads to high overhead and accelerated wear. While page-overwrite-based instant data sanitization has proven effective for 2D NAND, its applicability to 3D NAND is limited due to the unique sub-block architecture. In this study, we experimentally evaluate page-overwrite-based sanitization on commercial 3D NAND flash memory chips and uncover significant threshold voltage disturbances in erased cells on adjacent pages within the same layer but across different sub-blocks. Our key findings reveal that page-overwrite sanitization increases the median raw bit error rate (RBER) beyond correction limits (exceeding 0.93%) in Floating-Gate (FG) Single-Level Cell (SLC) technology, whereas Charge-Trap (CT) SLC 3D NAND flash memories exhibit higher robustness. In Triple-Level Cell (TLC) 3D NAND, page-overwrite sanitization proves impractical, with the median RBER of ∼13% for FG and ∼5% for CT devices. To overcome these challenges, we proposePULSE, a low-disturbance sanitization technique that balances sanitization efficiency ({{\eta }_{san}}) and data integrity (RBER). Experimental results show that PULSE eliminates RBER increases in SLC devices and reduces the median RBER to below 0.57% for FG and 0.79% for CT in fresh TLC blocks, demonstrating its practical viability for 3D NAND flash sanitization.  more » « less
Award ID(s):
2423249 2317563 2403540
PAR ID:
10633397
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deleting data instantly from NAND flash memories incurs hefty overheads, and increases wear level. Existing solutions involve unlinking the physical page addresses making data inaccessible through standard interfaces, but they carry the risk of data leakage. An all-zero-in-place data overwrite has been proposed as a countermeasure, but it applies only to SLC flash memories. This paper introduces an instant page data sanitization method for MLC flash memories that prevents leakage of deleted information without any negative effects on valid data in shared pages. We implement and evaluate the proposed method on commercial 2D and 3D NAND flash memory chips. 
    more » « less
  2. null (Ed.)
    Digital sanitization of flash based non-volatile memory system is a well-researched topic. Since flash memory cell holds information in the analog threshold voltage, flash cell may hold the imprints of previously written data even after digital sanitization. In this paper, we show that data is partially or completely recoverable from the flash media sanitized with “scrubbing” based technique, which is a popular technique for page deletion in NAND flash. We find that adversary may utilize the data retention property of the memory cells for recovering the deleted data using standard digital interfaces with the memory. We demonstrate data recovery from commercial flash memory chip, sanitized with scrubbing, by using partial erase operation on the chip. Our results show that analog scrubbing is needed to securely delete information in flash system. We propose and implement analog scrubbing using partial program operation based on the file creation time information. 
    more » « less
  3. Abstract KSB stability holds at codimension$$1$$points trivially, and it is quite well understood at codimension$$2$$points because we have a complete classification of$$2$$-dimensional slc singularities. We show that it is automatic in codimension$$3$$. 
    more » « less
  4. Abstract Ransomware attacks are increasingly prevalent in recent years. Crypto-ransomware corrupts files on an infected device and demands a ransom to recover them. In computing devices using flash memory storage (e.g., SSD, MicroSD, etc.), existing designs recover the compromised data by extracting the entire raw flash memory image, restoring the entire external storage to a good prior state. This is feasible through taking advantage of the out-of-place updates feature implemented in the flash translation layer (FTL). However, due to the lack of “file” semantics in the FTL, such a solution does not allow a fine-grained data recovery in terms of files. Considering the file-centric nature of ransomware attacks, recovering the entire disk is mostly unnecessary. In particular, the user may just wish a speedy recovery of certain critical files after a ransomware attack. In this work, we have designed$$\textsf{FFRecovery}$$ FFRecovery , a new ransomware defense strategy that can support fine-grained per file data recovery after the ransomware attack. Our key idea is that, to restore a file corrupted by the ransomware, we (1) restore its file system metadata via file system forensics, and (2) extract its file data via raw data extraction from the FTL, and (3) assemble the corresponding file system metadata and the file data. Another essential aspect of$$\textsf{FFRecovery}$$ FFRecovery is that we add a garbage collection delay and freeze mechanism into the FTL so that no raw data will be lost prior to the recovery and, additionally, the raw data needed for the recovery can be always located. A prototype of$$\textsf{FFRecovery}$$ FFRecovery has been developed and our experiments using real-world ransomware samples demonstrate the effectiveness of$$\textsf{FFRecovery}$$ FFRecovery . We also demonstrate that$$\textsf{FFRecovery}$$ FFRecovery has negligible storage cost and performance impact. 
    more » « less
  5. This article explores the reliability, security, and sustainability of future 3D NAND flash SSDs. We discuss scaling challenges, their impact on reliability and radiation-induced vulnerabilities, along with potential countermeasures. Security concerns, including data sanitization and supply chain risks, are also discussed. Finally, we highlight sustainability issues related to storage carbon footprints. Our article emphasizes the need for innovative solutions to improve the resilience, security, and environmental impact of 3D NAND technology. 
    more » « less