skip to main content

Title: Impact of Stand and Landscape Management on Forest Pest Damage
One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.
Authors:
; ;
Award ID(s):
1637685
Publication Date:
NSF-PAR ID:
10316393
Journal Name:
Annual Review of Entomology
Volume:
67
Issue:
1
ISSN:
0066-4170
Sponsoring Org:
National Science Foundation
More Like this
  1. Drought and warming increasingly are causing widespread tree die-offs and extreme wildfires. Forest managers are struggling to improve anticipatory forest management practices given more frequent, extensive, and severe wildfire and tree die-off events triggered by “hotter drought”—drought under warmer than historical conditions. Of even greater concern is the increasing probability of multi-year droughts, or “megadroughts”—persistent droughts that span years to decades, and that under a still-warming climate, will also be hotter than historical norms. Megadroughts under warmer temperatures are disconcerting because of their potential to trigger more severe forest die-off, fire cycles, pathogens, and insect outbreaks. In this Perspective, we identify potential anticipatory and/or concurrent options for non-timber forest management actions under megadrought, which by necessity are focused more at finer spatial scales such as the stand level using higher-intensity management. These management actions build on silvicultural practices focused on growth and yield (but not harvest). Current management options that can be focused at finer scales include key silvicultural practices: selective thinning; use of carefully selected forward-thinking seed mixes; site contouring; vegetation and pest management; soil erosion control; and fire management. For the extreme challenges posed by megadroughts, management will necessarily focus even more on finer-scale, higher-intensity actions for prioritymore »locations such as fostering stand refugia; assisted stand recovery via soil amendments; enhanced root development; deep soil water retention; and shallow water impoundments. Drought-induced forest die-off from megadrought likely will lead to fundamental changes in the structure, function, and composition of forest stands and the ecosystem services they provide.« less
  2. The influences of human and physical factors on species invasions have been extensively examined by ecologists across many regions. However, how habitat fragmentation per se may affect forest insect and disease invasion has not been well studied, especially the related patterns over regional or subcontinental scales. Here, using national survey data on forest pest richness and fragmentation data across United States forest ecosystems, we examine how forest fragmentation and edge types (neighboring land cover) may affect pest richness at the county level. Our results show that habitat fragmentation and edge types both affected pest richness. In general, specialist insects and pathogens were more sensitive to fragmentation and edge types than generalists, while pathogens were much less sensitive to fragmentation and edge types than insect pests. Most importantly, the developed land edge type contributed the most to the richness of nonnative insects and diseases, whether measured by the combination of all pest species or by separate guilds or species groups (i.e., generalists vs. specialists, insects vs. pathogens). This observation may largely reflect anthropogenic effects, including propagule pressure associated with human activities. These results shed new insights into the patterns of forest pest invasions, and it may have significant implications for forestmore »restoration and management.« less
  3. Abstract

    Birds increase crop yields via consumption of pests in some contexts but disrupt pest control via intraguild predation in others. Landscape complexity acts as an inconsistent mediator, sometimes increasing, decreasing, or not impacting pest control. Here, we examined how landscape context and seasonal variation mediate the impact of birds on arthropod pests and natural enemies, leaf damage, and yields of broccoli (Brassica oleracea) on highly diversified farms that spanned the USA west coast. Our study had two complementary components: a bird exclusion experiment and molecular diet analysis of 357 fecal samples collected from the most commonly captured bird species that also foraged in Brassica fields—American Goldfinch (Spinus tristis), American Robin (Turdus migratorius), Savannah Sparrow (Passerculus sandwichensis), Song Sparrow (Melospiza melodia), and White-crowned Sparrow (Zonotrichia leucophrys). Bird access yielded higher, rather than lower, numbers of pest aphids and increased their parasitism, while no other arthropods examined were consistently impacted. Independent of bird presence, percent natural cover in the landscape sometimes increased and sometimes decreased densities of arthropods in the mid-growth period, with diminishing impacts in the late-growth period. Herbivore feeding damage to broccoli leaves decreased with increasing amounts of natural land cover and in the late-growth period. Molecular diet analysismore »revealed that Brassica pests and predatory arthropods were relatively uncommon prey for birds. Landscape context did not alter the prey items found in bird diets. Altogether, our bird-exclusion experiment and molecular diet analysis suggested that birds have relatively modest impacts on the arthropods associated with broccoli plantings. More broadly, the limited support in our study for net natural pest control services suggests that financial incentives may be required to encourage the adoption of bird-friendly farming practices in certain cropping systems.

    « less
  4. Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.

  5. Mori, Akira (Ed.)
    Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production.