skip to main content


Title: Coordination of Protection and Ride-through Settings for Islanded Facility Microgrids
Proliferation of power electronics and distributed energy resources (DERs) into the electrical power system (EPS) enables improvements to the network’s resilience against sudden-inception short circuit electrical faults through redundant electrical pathways in meshed configurations and multiple possible distributed generation locations. However, successful operation of fault detection, isolation, and recovery in islanded mode is challenging as protection coordination must include not only the distribution equipment, but also the DERs. Assessment of resilience for candidate EPS architectures against short circuit faults must be performed to understand the trade-offs between network resilience and complexity. This paper proposes a design process, which can be used towards assessing microgrid resilience, by coordinating protection and ride-through settings to maximize the recoverability of a meshed islanded AC microgrid. The design process is demonstrated through a case-study.  more » « less
Award ID(s):
1939124
NSF-PAR ID:
10316399
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE Energy Conversion Congress and Exposition (ECCE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency. 
    more » « less
  2. Power grids based on traditional N-1 design criteria are no longer adequate because these designs do not withstand extreme weather events or cascading failures. Microgrid system has the capability of enhancing grid resilience through defensive or islanded operations in contingency. This paper presents a probabilistic framework for planning resilient distribution system via distributed wind and solar integration. We first define three aspects of resilient distribution system, namely prevention, survivability and recovery. Then we review the distributed generation planning models that comprehend moment estimation, chance constraints and bi-directional power flow. We strive to achieve two objectives: 1) enhancing the grid survivability when distribution lines are damaged or disconnected in the aftermath of disaster attack; and 2) accelerating the recovery of damaged assets through pro-active maintenance and repair services. A simple 9-node network is provided to demonstrate the application of the proposed resilience planning framework 
    more » « less
  3. This article identifies and validates the use of ultrafast silicon carbide (SiC) junction field effect transistor (JFET)-based self-powered solid-state circuit breakers (SSCBs) as the enabling protective device for a 340 Vdc residential dc community microgrid. These SSCBs will be incorporated into a radial distribution system in order to enhance fault discrimination through autonomous operation. Because of the nature and characteristics of short-circuit fault inception in dc microgrids, the time-current trip characteristics of protective devices must be several orders of magnitude faster than conventional circuit breakers. The proposed SSCBs detect short-circuit faults by sensing the sudden voltage rise between its two power terminals and draw power from the fault condition itself to turn off SiC JFETs and then, coordinate with no-load contacts that can isolate the fault. Depending upon the location of the SSCBs in the microgrid, either unidirectional or bidirectional implementations are incorporated. Cascaded SSCBs are tuned using a simple resistor change to enable fault discrimination between upstream high-current feeds and downstream lower current branches. Operation of one of the SSCBs and three in cascaded arrangements are validated both in simulation and with a hardware test platform. Thermal impact on the SSCB is discussed as well. The target application is a residential dc microgrid that will be installed as part of a revitalization effort of an inner city Milwaukee neighborhood. 
    more » « less
  4. This paper presents a novel noncommunication protection architecture based on utilizing the selected Distributed Generators (DGs) which provide high-frequency harmonics for harmonic-based overcurrent relays to detect and isolate three-phase faults in meshed microgrids. The most prominent features of this structure include limited number of DGs required to inject harmonics, no need for using centralized communication system, and the fault can be detected and located in all conditions such as load disconnection/connection and DG disconnection/connection. The optimum Time Dial Settings (TDSs) of these relays are obtained by solving a coordination problem with Particle Swarm Optimization (PSO) algorithm. Real-time results are produced using OPAL-RT to show the effectiveness of the proposed method for two different locations of faults in a meshed microgrid. 
    more » « less
  5. null (Ed.)
    Microgrids (MGs) comprising multiple interconnected distributed energy resources (DERs) with coordinated control strategies can operate in both grid-connected and islanded modes. In the grid-connected mode, the frequency and bus voltages are maintained by the utility grid. In the islanded mode, the DERs maintain the frequency and bus voltages in the MG. This paper presents a load demand sharing strategy in an islanded voltage source inverter-based microgrid (VSI-MG). The survivability of the interconnected MG in the presence of a single fully loaded VSI in an islanded VSI-MG is investigated. The concept of virtual synchronous machines (VSM) that enables the modeling of the VSI to emulate the inertia effect of synchronous machines is applied and then a Jacobian-based approach is formulated that takes into account, the capacity of the VSI. Simulation results are presented to verify the effectiveness of the approach. 
    more » « less