skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing ray-theoretical and finite-frequency teleseismic traveltimes: implications for constraining the ratio of S -wave to P -wave velocity variations in the lower mantle
SUMMARY A number of seismological studies have indicated that the ratio R of S-wave and P-wave velocity perturbations increases to 3–4 in the lower mantle with the highest values in the large low-velocity provinces (LLVPs) beneath Africa and the central Pacific. Traveltime constraints on R are based primarily on ray-theoretical modelling of delay times of P waves (ΔTP) and S waves (ΔTS), even for measurements derived from long-period waveforms and core-diffracted waves for which ray theory (RT) is deemed inaccurate. Along with a published set of traveltime delays, we compare predicted values of ΔTP, ΔTS, and the ΔTS/ΔTP ratio for RT and finite-frequency (FF) theory to determine the resolvability of R in the lower mantle. We determine the FF predictions of ΔTP and ΔTS using cross-correlation methods applied to spectral-element method waveforms, analogous to the analysis of recorded waveforms, and by integration using FF sensitivity kernels. Our calculations indicate that RT and FF predict a similar variation of the ΔTS/ΔTP ratio when R increases linearly with depth in the mantle. However, variations of R in relatively thin layers (< 400 km) are poorly resolved using long-period data (T > 20 s). This is because FF predicts that ΔTP and ΔTS vary smoothly with epicentral distance even when vertical P-wave and S-wave gradients change abruptly. Our waveform simulations also show that the estimate of R for the Pacific LLVP is strongly affected by velocity structure shallower in the mantle. If R increases with depth in the mantle, which appears to be a robust inference, the acceleration of P waves in the lithosphere beneath eastern North America and the high-velocity Farallon anomaly negates the P-wave deceleration in the LLVP. This results in a ΔTP of about 0, whereas ΔTS is positive. Consequently, the recorded high ΔTS/ΔTP for events in the southwest Pacific and stations in North America may be misinterpreted as an anomalously high R for the Pacific LLVP.  more » « less
Award ID(s):
1644829
PAR ID:
10316510
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
224
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate broadband SPdKS waveforms from earthquakes occurring beneath Myanmar. These paths sample the core–mantle boundary beneath northwestern China. Waveform modeling shows that two ∼250 × 250 km wide ultra-low velocity zones (ULVZs) with a thickness of roughly 10 km exist in the region. The ULVZ models fitting these data have large S-wave velocity drops of 55% but relatively small 14% P-wave velocity reductions. This is almost a 4:1 S- to P-wave velocity ratio and is suggestive of a partial melt origin. These ULVZs exist in a region of the Circum-Pacific with a long history of subduction and far from large low-velocity province (LLVP) boundaries where ULVZs are more commonly observed. It is possible that these ULVZs are generated by partial melting of mid-ocean ridge basalt. 
    more » « less
  2. SUMMARY Long-period (T > 10 s) shear wave reflections between the surface and reflecting boundaries below seismic stations are useful for studying phase transitions in the mantle transition zone (MTZ) but shear-velocity heterogeneity and finite-frequency effects complicate the interpretation of waveform stacks. We follow up on a recent study by Shearer & Buehler (hereafter SB19) of the top-side shear wave reflection Ssds as a probe for mapping the depths of the 410-km and 660-km discontinuities beneath the USArray. Like SB19, we observe that the recorded Ss410s-S and Ss660s-S traveltime differences are longer at stations in the western United States than in the central-eastern United States. The 410-km and 660-km discontinuities are about 40–50 km deeper beneath the western United States than the central-eastern United States if Ss410s-S and Ss660s-S traveltime differences are transformed to depth using a common-reflection point (CRP) mapping approach based on a 1-D seismic model (PREM in our case). However, the east-to-west deepening of the MTZ disappears in the CRP image if we account for 3-D shear wave velocity variations in the mantle according to global tomography. In addition, from spectral-element method synthetics, we find that ray theory overpredicts the traveltime delays of the reverberations. Undulations of the 410-km and 660-km discontinuities are underestimated when their wavelengths are smaller than the Fresnel zones of the wave reverberations in the MTZ. Therefore, modelling of layering in the upper mantle must be based on 3-D reference structures and accurate calculations of reverberation traveltimes. 
    more » « less
  3. Abstract Seismic energy arriving before the compressional (P) wave passing through the core (PKP), called PKP precursors, have been detected for decades, but the origin of those arrivals is ambiguous. The largest amplitude arrivals are linked to scattering at small‐scale lowermost mantle structure, but because these arrivals traverse both source and receiver sides of the mantle, it is unknown which side of the path the energy is scattered from. To address this ambiguity, we apply a new seismic array method to analyze PKP waveforms from 58 earthquakes recorded in North America that allows localization of the origin of the PKP precursors at the core‐mantle boundary (CMB). We compare these measurements with high frequency 2.5‐D synthetic predictions showing that the PKP precursors are most likely associated with ultra‐low velocity zone structures beneath the western Pacific and North America. The most feasible scenario to generate ULVZs in both locations is through melting of mid‐ocean ridge basalt in subducted oceanic crust. 
    more » « less
  4. Abstract Two large low velocity provinces (LLVPs) are observed in Earth's lower mantle, beneath Africa and the Pacific Ocean, respectively. The maximum height of the African LLVP is ∼1,000 km larger than that of the Pacific LLVP, but what causes this height difference remains unclear. LLVPs are often interpreted as thermochemical piles whose morphology is greatly controlled by the surrounding mantle flow. Seismic observations have revealed that while some subducted slabs are laterally deflected at ∼660–1,200 km, other slabs penetrate into the lowermost mantle. Here, through geodynamic modeling experiments, we show that rapid sinking of stagnant slabs to the lowermost mantle can cause significant height increases of nearby thermochemical piles. Our results suggest that the African LLVP may have been pushed more strongly and longer by surrounding mantle flows to reach a much shallower depth than the Pacific LLVP, perhaps since the Tethys slabs sank to the lowermost mantle. 
    more » « less
  5. Abstract Observations of seismic waves that have passed through the Earth's lowermost mantle provide insight into deep mantle structure and dynamics, often on relatively small spatial scales. Here we use SKS, S2KS, S3KS, and PKS signals recorded across a large region including the United States, Mexico, and Central America to study the deepest mantle beneath large swaths of North America and the northeastern Pacific Ocean. These phases are enhanced via beamforming and then used to investigate polarization‐ and propagation direction‐dependent shear wave speeds (seismic anisotropy). A differential splitting approach enables us to robustly identify contributions from anisotropy. Our results show strong seismic anisotropy in approximately half of our study region, indicating that anisotropy may be more prevalent than commonly thought. In some regions, the anisotropy may be induced by flow driven by sinking cold slabs, and in other, more compact regions, by upwelling flow. Measured splitting due to lowermost mantle anisotropy is sufficiently strong to be non‐negligible in interpretations of SKS splitting due to upper mantle anisotropy in certain regions, which may prompt future re‐evaluations of upper mantle anisotropy beneath North and Central America. 
    more » « less