skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting the Definition of Overpersistence
Abstract — In this Full Research Paper, we propose a new definition of overpersistence in an engineering discipline and investigate its implications at one institution. Precisely defining overpersistence in both a conceptual and operational sense is a critical step in predicting overpersistence and identifying indicators that will allow for personalized guidance for students at risk of overpersisting. We have previously identified our population of interest as students who enroll at the institution as first-time-in-college students for at least one year, attend full time, have had six years to graduate, and have enrolled in only one degree-granting program. Within this group, we operationalized overpersistence by identifying students as overpersisters if they either (i) left the university without a degree or (ii) enrolled in the same major for six years and did not graduate. In this work, we revisit our definition of overpersistence using more recent data by reconsidering two groups of students in particular – those who spend only a short time in the discipline before leaving the institution (formerly classified as overpersisters), and those who spend a long time in the discipline but eventually switch majors (formerly excluded from the initial population). We conclude that the most appropriate definition of overpersistence at an institution with a first-year engineering program is when a student spends three or more semesters in their first discipline-specific major and does not graduate in that major within six years of matriculation to the institution. These results will be useful for researchers and practitioners seeking to identify alternative paths for success for students who are at risk of overpersisting in a major.  more » « less
Award ID(s):
1745347
PAR ID:
10316531
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work-in-progress paper represents our initial approach to developing a procedure for identifying indicators of “overpersistence.” This approach is one facet of a larger NSF CAREER project, “Empowering students to be adaptive decision-makers,” to model student pathways using a ground-up curriculum-specific approach with the ultimate goal of helping students choose more strategic paths to graduation. We define “overpersisters” as those students who enter college with a specific major in mind and never sway from that choice, nor graduate in a timely manner. While persistence in and commitment to a major choice are generally viewed positively, some students become fixated on a major that may not be the best fit for them. These overpersisters often spend years in a degree program and eventually leave the institution with no degree, but potentially with a substantial amount of debt. Identifying academic events that cause these students to eventually withdraw from school is the first step towards creating better strategies through which they can persist and succeed in their undergraduate studies. The concept of overpersistence is defined relative to a particular major, so a student who tries a different major before leaving the institution would not be considered an overpersister. We selected the discipline of Mechanical Engineering as a starting point because of its large enrollment and the first author’s familiarity with the discipline. Our goal is to begin developing a procedure that will identify indicators of overpersistence and provide a foundation that will help to answer the larger research question: In Mechanical Engineering, what academic events commonly lead to late dropout without changes in academic major? 
    more » « less
  2. Multiple stakeholders are interested in measuring undergraduate student success in college across academic fields. Different metrics might appeal to different stakeholders. Some metrics such as the fraction of first-time, full-time students who start in the fall who graduate within six years, the graduation rate, are federally mandated by the U.S. Department of Education, Integrated Postsecondary Education Data System (IPEDS). We argue that this calculation of graduation rate is inherently problematic because it excludes up to 60% of students who transfer into an institution, enroll part-time, or enroll in terms other than the fall. By expanding the starters definition, we propose a graduation rate definition that includes conventionally excluded students and provides information on progression in a specific program. Stickiness is an even more-inclusive alternative, measuring a program’s success in graduating all undergraduates ever enrolled in the program. In this work, programs are grouped into six academic fields: Arts and Humanities, Business, Engineering, Other, Social Sciences, and STM (Science, Technology, and Mathematics. Stickiness is the percentage of students who ever enroll in an academic field that graduate in the same field. We use the Multiple Institution Dataset for Investigating Engineering Longitudinal Development (MIDFIELD) 2023 which contains unit-record data for over 2 million individual students at 19 institutions. For the academic fields studied, Engineering has the highest graduation rate and third highest stickiness. Social Sciences and Business also have higher graduation rates and stickiness than the other fields. We also track the relative fraction of students migrating to and from each academic field. This paper continues our work to derive better metrics for understanding student success. 
    more » « less
  3. In recent years, research has associated grade point average (GPA) with a variety of student outcomes during their undergraduate careers. The studies link higher GPAs to students being more likely to graduate in their major, while lower GPAs have been linked to students switching majors or leaving the institution. Further research, which focuses on how Black female and male students remain successful in different engineering degrees, is necessary to identify the underlying elements contributing to their entrance into and exit from engineering disciplines. This quantitative examination of trends among the GPAs of Black women and men is part of a larger NSF-funded mixed-methods study that includes in-depth student interviews of Black students who persisted in and switched from ME. In this quantitative paper, we examine the GPA patterns of Black students in Mechanical Engineering (ME). Students who have ever enrolled in ME have four potential, mutually exclusive, outcomes: 1) they can persist for 12 semesters without graduating; 2) they can graduate in ME within 12 semesters; 3) they can switch to another major; or 4) they can leave school. In this research, we identify the most common GPA patterns associated with graduated ME students. We hypothesize a relationship between distinct GPA patterns and whether a student persists in ME, graduates in ME, switches away from ME, or leaves the institution altogether. This quantitative investigation uses the Multiple-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) to collect the cumulative GPA of ME students at each term. We use a functional cluster analysis approach to group similar patterns. First, a function is fit to each student record. Then a cluster analysis is conducted on the function parameters to identify natural groupings in the data. Once students are grouped according to their GPA profile, we examine the other characteristics and outcomes of the group. We present a visual quantitative analysis of the patterns in the GPAs of Black women and men who enroll in ME. Clustering analysis suggests that first-time-in-college (FTIC) Black female students in ME who graduated have a higher proportion of students in the higher GPA clusters than the proportion of FTIC Black male students who graduated in ME. A higher proportion of the male student population is clustered in the lower GPA cluster groups as compared to women in the lower GPA cluster groups. A higher proportion of students who graduated are in the higher GPA clusters than the proportion of graduated students in the lower GPA clusters. 
    more » « less
  4. Educating Engineering Students Innovatively (EESI, pronounced "easy") is a student support program for sophomores to seniors enrolled in an engineering major offered at the FAMU-FSU College of Engineering. The program is designed to: (1) foster a sense of community, (2) improve students’ engineering skill sets, and (3) provide each student with their direct path of interest from college to the STEM workforce. Universities spend much effort to provide student support programs for first-year students, such as summer bridge programs. However, sometimes upper-level students are not offered the same level of support and can fall off the STEM pathway. Introducing experiential learning experiences centered on the safe space (or community) of students provides a model to address underrepresentation in the STEM workforce and graduate school. This case study of an experiential learning program will provide an option for universities to consider underrepresented minority upperclassmen retention methods. We will present data for students enrolled in an engineering major between 2018-2021, considering students' gender, first-generation, and financial status. This paper will report the results of four (4) different cohorts of EESI Scholars who completed at least one semester in the student support program. We compare the retention rates, persistence, and academic performance of EESI Scholars compared with students that did not participate in the student support program as one measure of the program's success. Then we provide the best practices of the experiential learning program that led to students' persistence at ***** University. This paper could assist other colleges that would like to ensure Black students, who have been historically underrepresented in STEM, persistence in their engineering programs. 
    more » « less
  5. In this Research Full Paper we explore the factors that traditionally minoritized students consider when selecting a graduate school to pursue a doctoral degree in an engineering discipline. To this end, we used case study methods to analyze the experiences of ten traditionally minoritized students through interviews conducted immediately after they had selected their graduate programs, but before they had commenced their studies. Our findings show that in choosing an institution, the most salient ideals these students hold are related to the offer of funding towards their degree and an alignment with their initial research interests. However, they described having made compromises on ideals related to their personal experience and racial identity, the most prominent being finding a faculty mentor with a similar racial background, finding a racially diverse institution, or being located in a geographical location they perceived to be more amenable to their individual identities. These findings suggest that continuing to increase the recruitment of traditionally minoritized faculty in engineering schools would have a direct impact on minoritized student recruitment, by thus helping to create spaces where more of their racial identity ideals are met and fewer compromises are made. Equally important to the recruitment of traditionally minoritized students is the transparency of funding opportunities during the recruitment and application processes, and the publication of current research opportunities within the institution. 
    more » « less