skip to main content


Title: Distributed Solution of GNEP over Networks via the Douglas-Rachford Splitting Method
The aim of this paper is to find the distributed solution of the generalized Nash equilibrium problem (GNEP) for a group of players that can communicate with each other over a connected communication network. Each player tries to minimize a local objective function of its own that may depend on the other players’ decisions, and collectively all the players’ decisions are subject to some globally shared resource constraints. After reformulating the local optimization problems, we introduce the notion of network Lagrangian and recast the GNEP as the zero finding problem of a properly defined operator. Utilizing the Douglas-Rachford operator splitting method, a distributed algorithm is proposed that requires only local information exchanges between neighboring players in each iteration. The convergence of the proposed algorithm to an exact variational generalized Nash equilibrium is established under two different sets of assumptions. The effectiveness of the proposed algorithm is demonstrated using the example of a Nash-Cournot production game.  more » « less
Award ID(s):
2014816
NSF-PAR ID:
10316599
Author(s) / Creator(s):
;
Date Published:
Journal Name:
60th IEEE Conference on Decision and Control (CDC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the stochastic generalized Nash equilibrium problem (SGNEP) where a set of self-interested players, subject to certain global constraints, aim to optimize their local objectives that depend on their own decisions and the decisions of others and are influenced by some random factors. A distributed stochastic generalized Nash equilibrium seeking algorithm is proposed based on the Douglas-Rachford operator splitting scheme, which only requires local communications among neighbors. The proposed scheme significantly relaxes assumptions on co-coercivity and contractiveness in the existing literature, where the projected stochastic subgradient method is applied to provide approximate solutions to the augmented best-response subproblems for each player. Finally, we illustrate the validity of the proposed algorithm through a Nash-Cournot production game. 
    more » « less
  2. We consider the stochastic generalized Nash equilibrium problem (SGNEP) where a set of self-interested players, subject to certain global constraints, aim to optimize their local objectives that depend on their own decisions and the decisions of others and are influenced by some random factors. A distributed stochastic generalized Nash equilibrium seeking algorithm is proposed based on the Douglas-Rachford operator splitting scheme, which only requires local communications among neighbors. The proposed scheme significantly relaxes assumptions on co-coercivity and contractiveness in the existing literature, where the projected stochastic subgradient method is applied to provide approximate solutions to the augmented best-response subproblems for each player. Finally, we illustrate the validity of the proposed algorithm through a Nash-Cournot production game. 
    more » « less
  3. null (Ed.)
    Unmanned Aerial Vehicle (UAV)-assisted Multi-access Edge Computing (MEC) systems have emerged recently as a flexible and dynamic computing environment, providing task offloading service to the users. In order for such a paradigm to be viable, the operator of a UAV-mounted MEC server should enjoy some form of profit by offering its computing capabilities to the end users. To deal with this issue in this paper, we apply a usage-based pricing policy for allowing the exploitation of the servers’ computing resources. The proposed pricing mechanism implicitly introduces a more social behavior to the users with respect to competing for the UAV-mounted MEC servers’ computation resources. In order to properly model the users’ risk-aware behavior within the overall data offloading decision-making process the principles of Prospect Theory are adopted, while the exploitation of the available computation resources is considered based on the theory of the Tragedy of the Commons. Initially, the user’s prospect-theoretic utility function is formulated by quantifying the user’s risk seeking and loss aversion behavior, while taking into account the pricing mechanism. Accordingly, the users’ pricing and risk-aware data offloading problem is formulated as a distributed maximization problem of each user’s expected prospect-theoretic utility function and addressed as a non-cooperative game among the users. The existence of a Pure Nash Equilibrium (PNE) for the formulated non-cooperative game is shown based on the theory of submodular games. An iterative and distributed algorithm is introduced which converges to the PNE, following the learning rule of the best response dynamics. The performance evaluation of the proposed approach is achieved via modeling and simulation, and detailed numerical results are presented highlighting its key operation features and benefits. 
    more » « less
  4. null (Ed.)
    Considered is a multi-channel wireless network for secret communication that uses the signal-to-interference-plus-noise ratio (SINR) as the performance measure. An eavesdropper can intercept encoded messages through a degraded channel of each legitimate transmitter-receiver communication pair. A friendly interferer, on the other hand, may send cooperative jamming signals to enhance the secrecy performance of the whole network. Besides, the state information of the eavesdropping channel may not be known completely. The transmitters and the friendly interferer have to cooperatively decide on the optimal jamming power allocation strategy that balances the secrecy performance with the cost of employing intentional interference, while the eavesdropper tries to maximize her eavesdropping capacity. To solve this problem, we propose and analyze a non-zero-sum game between the network defender and the eavesdropper who can only attack a limited number of channels. We show that the Nash equilibrium strategies for the players are of threshold type. We present an algorithm to find the equilibrium strategy pair. Numerical examples demonstrate the equilibrium and contrast it to baseline strategies. 
    more » « less
  5. Yllka Velaj and Ulrich Berger (Ed.)

    This paper considers a two-player game where each player chooses a resource from a finite collection of options. Each resource brings a random reward. Both players have statistical information regarding the rewards of each resource. Additionally, there exists an information asymmetry where each player has knowledge of the reward realizations of different subsets of the resources. If both players choose the same resource, the reward is divided equally between them, whereas if they choose different resources, each player gains the full reward of the resource. We first implement the iterative best response algorithm to find an ϵ-approximate Nash equilibrium for this game. This method of finding a Nash equilibrium may not be desirable when players do not trust each other and place no assumptions on the incentives of the opponent. To handle this case, we solve the problem of maximizing the worst-case expected utility of the first player. The solution leads to counter-intuitive insights in certain special cases. To solve the general version of the problem, we develop an efficient algorithmic solution that combines online convex optimization and the drift-plus penalty technique.

     
    more » « less