skip to main content

Title: Estimating pelagic primary production in lakes: Comparison of 14C incubation and free‐water O2 approaches
Award ID(s):
2025982 1754363 1930655 1255159
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  2. Abstract

    The sensitized photooxidation ofortho‐prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2‐(prop‐1‐en‐2‐yl)‐2,3‐dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT) of singlet oxygen with prenyl phenol by ~10‐fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen to prenyl site due to hydrogen bonding with the phenol OH group, which causes a divergence away from the singlet oxygen ‘ene’ reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation.

    more » « less
  3. Summary

    Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations ofCO2. The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE).

    We quantified respiratory partitioning of gross primary production (GPP) andCUEof field‐grown trees in a long‐term warming experiment (+3°C). We delivered a13C–CO2pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns.

    We documented homeostatic respiratory acclimation of foliar and whole‐crown respiration rates; the trees adjusted to experimental warming such that leaf‐level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the13C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained.

    Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.

    more » « less
  4. Abstract

    A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+Iand CHI2+Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.

    more » « less
  5. Abstract

    Patterns ofδ18O andδ2H in Earth's precipitation provide essential scientific data for use in hydrological, climatological, ecological and forensic research. Insufficient global spatial data coverage promulgated the use of gridded datasets employing geostatistical techniques (isoscapes) for spatiotemporally coherent isotope predictions. Cluster‐based isoscape regionalization combines the advantages of local or regional prediction calibrations into a global framework. Here we present a revision of a Regionalized Cluster‐Based Water Isotope Prediction model (RCWIP2) incorporating new isotope data having extensive spatial coverage and a wider array of predictor variables combined with high‐resolution gridded climatic data. We introduced coupling ofδ18O andδ2H (e.g.,d‐excess constrained) in the model predictions to prevent runaway isoscapes when each isotope is modelled separately and cross‐checked observed versus modelledd‐excess values. We improved model error quantification by adopting full uncertainty propagation in all calculations. RCWIP2 improved the RMSE over previous isoscape models by ca. 0.3 ‰ forδ18O and 2.5 ‰ forδ2H with an uncertainty <1.0 ‰ forδ18O and < 8 ‰ forδ2H for most regions of the world. The determination of the relative importance of each predictor variable in each ecoclimatic zone is a new approach to identify previously unrecognized climatic drivers on mean annual precipitationδ18O andδ2H. The improved RCWIP2 isoscape grids and maps (season, monthly, annual, regional) are available for download at

    more » « less