Estimating pelagic primary production in lakes: Comparison of 14C incubation and free‐water O2 approaches
More Like this
-
Abstract The sensitized photooxidation ofortho‐prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2‐(prop‐1‐en‐2‐yl)‐2,3‐dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT) of singlet oxygen with prenyl phenol by ~10‐fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen to prenyl site due to hydrogen bonding with the phenol OH group, which causes a divergence away from the singlet oxygen ‘ene’ reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation.more » « less
-
The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds.more » « less
-
Abstract Oxygen and hydrogen isotopes were used in this study to detect a hydraulic connection between a sinkhole lake and a karst spring. In karst areas, surface water that flows to a lake can drain through sinkholes in the lakebed to the underlying aquifer, and then flows in karst conduits and through aquifer matrix. At the study site located in northwest Florida, USA, Lake Miccosukee immediately drains into two sinkholes. Results from a dye tracing experiment indicate that lake water discharges at Natural Bridge Spring, a first‐magnitude spring 32 km downgradient from the lake. By collecting weekly water samples from the lake, the spring, and a groundwater well 10 m away from the lake during the dry period between October 2019 and January 2020, it was found that, when rainfall effects on isotopic signature in spring water are removed, increased isotope ratios of spring water can be explained by mixing of heavy‐isotope‐enriched lake water into groundwater, indicating hydraulic connection between the lake and the spring. Such a detection of hydraulic connection at the scale of tens of kilometers and for a first‐magnitude spring has not been previously reported in the literature. Based on the isotope ratio data, it was estimated that, during the study period, about 8.5% the spring discharge was the lake water that drained into the lake sinkholes.more » « less
-
Abstract The transport of Ca2+across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol‐3‐phosphate (PI3P) by the PI3P‐5‐kinase Fab1 to produce transient PI(3,5)P2pools. Ca2+is also released during vacuole fusion upontrans‐SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2on Ca2+flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2were required for Ca2+uptake into the vacuole, increased concentrations abolished Ca2+efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2or increased endogenous production of by the hyperactivefab1T2250Amutant. In contrast, the lack of PI(3,5)P2on vacuoles from the kinase deadfab1EEEmutant showed delayed and decreased Ca2+uptake. The effects of PI(3,5)P2were linked to the Ca2+pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2. Experiments with Verapamil inhibited Ca2+uptake when added at the start of the assay, while adding it after Ca2+had been taken up resulted in the rapid expulsion of Ca2+. Vacuoles lacking both Pmc1 and the H+/Ca2+exchanger Vcx1 lacked the ability to take up Ca2+and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2can modulate which path predominates.more » « less