skip to main content


Title: BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale
Abstract. Watersheds are the fundamental Earth surface functioning units that connect the land to aquatic systems. Many watershed-scale models represent hydrological processes but not biogeochemical reactive transport processes. This has limited our capability to understand and predict solute export, water chemistry and quality, and Earth system response to changing climate and anthropogenic conditions. Here we present a recently developed BioRT-Flux-PIHM (BioRT hereafter) v1.0, a watershed-scale biogeochemical reactive transport model. The model augments the previously developed RT-Flux-PIHM that integrates land-surface interactions, surface hydrology, and abiotic geochemical reactions. It enables the simulation of (1) shallow and deep-water partitioning to represent surface runoff, shallow soil water, and deeper groundwater and of (2) biotic processes including plant uptake, soil respiration, and nutrient transformation. The reactive transport part of the code has been verified against the widely used reactive transport code CrunchTope. BioRT-Flux-PIHM v1.0 has recently been applied in multiple watersheds under diverse climate, vegetation, and geological conditions. This paper briefly introduces the governing equations and model structure with a focus on new aspects of the model. It also showcases one hydrology example that simulates shallow and deep-water interactions and two biogeochemical examples relevant to nitrate and dissolved organic carbon (DOC). These examples are illustrated in two simulation modes of complexity. One is the spatially lumped mode (i.e., two land cells connected by one river segment) that focuses on processes and average behavior of a watershed. Another is the spatially distributed mode (i.e., hundreds of cells) that includes details of topography, land cover, and soil properties. Whereas the spatially lumped mode represents averaged properties and processes and temporal variations, the spatially distributed mode can be used to understand the impacts of spatial structure and identify hot spots of biogeochemical reactions. The model can be used to mechanistically understand coupled hydrological and biogeochemical processes under gradients of climate, vegetation, geology, and land use conditions.  more » « less
Award ID(s):
1759071
NSF-PAR ID:
10316904
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
15
Issue:
1
ISSN:
1991-9603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Woody encroachment is a widespread phenomenon in grassland ecosystems, driven by overgrazing, fire suppression, nitrogen deposition and climate change, among other environmental changes. The influence of woody encroachment on processes such as chemical weathering however is poorly understood. In particular, for fast reactions such as carbonate weathering, root traits associated with woody encroachment (e.g., coarser, deeper, and longer residence times) can potentially change fluxes of inorganic carbon into streams and back to the atmosphere, providing CO2-climate feedbacks. Here we examine the influence of deepening roots arising from woody encroachment on catchment water balance and carbonate weathering rates at Konza a tallgrass prairie within a carbonate terrain where woody encroachment is suspected to drive the groundwater alkalinity upwards. We use a watershed reactive transport model BioRT-Flux-PIHM to understand the ramifications of deepening roots. Stream discharge and evapotranspiration (ET) measurements were used to calibrate the hydrology model. The subsurface CO2 concentration, water quality data for groundwater, stream, soil water and precipitation were used to constrain the soil respiration and carbonate dissolution reaction rates. The hydrology model has a Nash-Sutcliffe Efficiency value of 0.88. Modelling results from numerical experiments indicate that woody encroachment results in overall lower stream flow due to higher ET, yet the groundwater recharge is higher due to deep macropore development from deepening roots. The deeper macropores enhance carbonate weathering rate as more acidic, CO2-rich water recharges the deeper calcite bedrock. Accounting for the change in inorganic carbon fluxes caused by such land use changes gives a better estimate of carbon fluxes in the biosphere. Such knowledge is essential for effective planning of climate change mitigation strategies. 
    more » « less
  2. Abstract

    There is a critical knowledge gap about how glacier retreat in remote and rapidly warming tropical montane watersheds will impact solute export, which has implications for downstream geochemical cycling and ecological function. Because tropical glacierized watersheds are often uniquely characterized by year‐round ablation, upslope vegetation migration, and significant groundwater flow, baseline understanding is needed of how spatiotemporal variables within these watersheds control outlet hydrochemistry. We implemented a recently developed reactive transport watershed model, BioRT‐Flux‐PIHM, for a sub‐humid glacierized watershed in the Ecuadorian Andes with young volcanic soils and fractured bedrock. We found a unique simulated concentration and discharge (C‐Q) pattern that was mostly chemostatic but superimposed by dilution episodes. The chemostatic background was attributed to large simulated contributions of groundwater (subsurface lateral flow) to streamflow, of which a notable fraction (37%) comprised infiltrated ice‐melt. Relatively constant concentrations were further maintained in the model because times and locations of lower mineral surface wetting and dissolution were offset by concentrating effects of greater evapotranspiration. Ice‐melt did not all infiltrate in simulations, especially during large precipitation events, when high surface runoff contributions to discharge triggered dilution episodes. In a model scenario without ice‐melt, major ion concentrations, including Na+, Ca2+, and Mg2+, became more strongly chemostatic and higher, but weathering rates decreased, attenuating export by 23%. We expect this reduction to be exacerbated by higher evapotranspiration and drier conditions with expanded vegetation. This work brings to light the importance of subsurface meltwater flow, ecohydrological variability, and interactions between melt and precipitation for controlling hydrochemical processes in tropical watersheds with rapidly retreating glaciers.

     
    more » « less
  3. High elevation mountain watersheds are undergoing rapid warming and declining snow fractions worldwide, causing earlier and quicker snowmelt. Understanding how this hydrologic shift affects subsurface flow paths, biogeochemical reactions, and solute export has been challenging due to the entanglement of hydrological and biogeochemical processes. Coal Creek, a high-elevation catchment (2,700 3,700 m, 53 km2) in Colorado, is experiencing a higher rate of warming than surrounding low-lying areas. This warming corresponds with dynamic and increased responses from biogenic solutes and dissolved organic carbon (DOC), whereas the behavior of geogenic solutes and dissolved inorganic carbon (DIC) has remained relatively unchanged. DOC has experienced the largest concentration increase (>3x), with annual average flow weighted concentrations positively correlated to average annual temperature. This suggests temperature is the main driver of increasing DOC levels. Although DOC and DIC response to warming is influenced by many drivers, the relative contribution of each remains unknown. DOC and DIC were analyzed to incorporate both carbon component products of soil respiration (DOC and CO2) and to represent high solute concentrations transported by shallow (DOC) versus deep (DIC) subsurface flow. The contrasting behavior of these carbon solutes indicates climate change and warming are driving changes in organic matter decomposition and soil respiration. Modeling results from the process-based model HBV-BioRT show increased temperatures cause earlier snowmelt and streamflow generation and lower peak discharge. As stream flow generation occurs earlier, so do DOC flushing and DIC dilution events. Additionally, post-snowmelt periods show greater DOC production and concentrations under warming scenarios. Results indicated increased production of DOC in post-snowmelt periods. DOC is then flushed out by earlier snowmelt partitioned through the shallow soil zone. Most process-based studies lack a watershed-scale understanding of carbon transformation and flow path alterations. This work demonstrates complex hydrologic and biogeochemical coupling at the watershed scale to illustrate how water flow paths and chemistry are responding to a changing climate in highelevation mountain watersheds. 
    more » « less
  4. Clearcutting and other land-use changes are known to release terrestrial carbon and mobilize organic carbon into streamwater, significantly augmenting aquatic carbon levels in the short-term. However, little is known about the lasting impacts of forest management decisions on the riverine concentration levels of Dissolved Organic Carbon (DOC). Here we compare data from HJ Andrews Experimental Forest, a long-term ecological research (LTER) site located in the Oregon Cascades. We paired stream chemistry and discharge measurements spanning 15-30 years. Two watersheds that were 100\% clear-cut 40-50 years ago (WS01 and WS10) were compared with their unharvested and controlled counterparts (WS02 and WS09). Temporal analysis showed that, on average, DOC concentrations in the old-growth watersheds are notably higher than their harvested analogs to this day. This suggests even though clearcutting can release DOC from soil and vegetation to water, the terrestrial organic carbon stock is ultimately depleted post-clearcutting resulting in lower DOC concentrations. Concentration-discharge (CQ) analysis also revealed a sharp difference in behaviors between watersheds 1 and 2, with WS01 exhibiting a slight flushing pattern bordering on hysteresis while WS02 displayed a pronounced dilution pattern. Based on the shallow-deep hypothesis (Zhi et al. 2019; Zhi and Li, 2020) this indicates that the old-growth watershed has a pronounced groundwater DOC source, and clearcutting could have altered this source within WS01 and significantly lowered baseflow organic carbon concentrations. However, it should be noted that WS09 and WS10 displayed DOC behavior similar to that of WS01, which could also signify that the previously mentioned opposing CQ behaviors are a result of some underlying geological or lithological contribution unique to WS02. These competing hypotheses will be further tested using a watershed scale reactive transport model HBV-BioRT.", 
    more » « less
  5. Abstract

    Tracer‐aided rainfall‐runoff modelling is a promising tool for understanding catchment hydrology, particularly when tracers provide information about coupled hydrological‐biogeochemical processes. Such models allow for predicting the quality and quantity of water under changing climatic and anthropogenic conditions. Here, we present the Spatially‐distributed Tracer‐Aided Rainfall‐Runoff model with a coupled biogeochemical reactive tracer module (STARR‐DOC) to simulate dissolved organic carbon (DOC) dynamics and sources. The STARR‐DOC model was developed and tested for a humid high Andean ecosystem (páramo) using high‐resolution hourly DOC and hydrometeorological data to simulate hourly discharge and DOC at a fine spatial (10 × 10 m) resolution. Overall, the model was able to acceptably reproduce discharge (KGE ~ 0.45) and stream DOC (KGE ~ 0.69) dynamics. Spatially distributed DOC simulations were independently compared using point DOC measurements for different soil types across the catchment, which allowed for identifying DOC production hot spots and hot moments. Results showed higher hydrological connectivity between slopes and valleys with increasing precipitation. Wetter conditions also favoured DOC production (wet month = 82 mg L−1, dry month = 5 mg L−1) and transport to the stream network (DOC concentrations: during events ~15 mg L−1, during baseflows ~4 mg L−1). Our results also suggest that minor changes in meteorological conditions directly affect páramo soil water dynamics and biogeochemistry. Knowledge of when and where DOC production in mountain catchments is greatest is important for water managers to understand when they make decisions about water security, especially considering climate change predictions for the Andean region.

     
    more » « less