The contribution of diatoms to the production and export of organic carbon is highly modified in high-nutrient low-chlorophyll (HNLC) regions due to the decoupling of upper-ocean silicon and carbon cycling caused by low iron. The Si cycle and the role of diatoms in the biological carbon pump was examined at Ocean Station Papa (OSP) in the HNLC region of the northeastern subarctic Pacific during the NASA EX port Processes in the Ocean from RemoTe Sensing (EXPORTS) field study. Sampling occurred during the annual minimum in surface silicic acid concentration, [Si(OH)4 ]. Biogenic silica (bSi) concentrations were low being in the tens of nanomolar range despite high [Si(OH) 4 ], ~15 μM. On average the > 5.0 μm particle size fraction dominated Si dynamics accounting for 65% of bSi stocks and 81% of Si uptake compared to the small fraction (0.6 - 5.0 μm). Limitation of Si uptake was detected in the small, but not the large, size fraction. Small diatoms were co-limited with growth rate restricted by Fe and Si uptake restricted by [Si(OH) 4 ], whereas larger diatoms were only growth limited by Fe. About a third of silica production was exported out of the upper 100 m. Themore »
An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment
The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated more »
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10317006
- Journal Name:
- Elementa: Science of the Anthropocene
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2325-1026
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »
-
Particulate inorganic carbon (PIC) plays a major role in the ocean carbon cycle impacting pH, dissolved inorganic carbon, and alkalinity, as well as particulate organic carbon (POC) export and transfer efficiency to the deep sea. Remote sensing retrievals of PIC in surface waters span two decades, yet knowledge of PIC concentration variability in the water column is temporally and spatially limited due to a reliance on ship sampling. To overcome the space–time gap in observations, we have developed optical sensors for PIC concentration and flux that exploit the high mineral birefringence of CaCO 3 minerals, and thus enable real-time data when deployed operationally from ship CTDs and ARGO-style Carbon Flux Explorer floats. For PIC concentrations, we describe a fast (10 Hz) digital low-power (∼0.5 W) sensor that utilizes cross-polarized transmitted light to detect the photon yield from suspended birefringent particles in the water column. This sensor has been CTD-deployed to depths as great as 6,000 m and cross-calibrated against particulates sampled by large volume in situ filtration and CTD/rosettes. We report data from the September–November 2018 GEOTRACES GP15 meridional transect from the Aleutian Islands to Tahiti along 152°W where we validated two prototype sensors deployed on separate CTD systems surface to bottom atmore »
-
Abstract Acrucial region of the ocean surface boundary layer (OSBL) is the strongly-sheared and -stratified transition layer (TL) separating the mixed layer from the upper pycnocline, where a diverse range of waves and instabilities are possible. Previous work suggests that these different waves and instabilities will lead to different OSBL behaviours. Therefore, understanding which physical processes occur is key for modelling the TL. Here we present observations of the TL from a Lagrangian float deployed for 73 days near Ocean Weather Station Papa (50°N, 145°W) during Fall 2018. The float followed the vertical motion of the TL, continuously measuring profiles across it using an ADCP, temperature chain and salinity sensors. The temperature chain made depth/time images of TL structures with a resolution of 6cm and 3 seconds. These showed the frequent occurrence of very sharp interfaces, dominated by temperature jumps of O(1)°C over 6cm or less. Temperature inversions were typically small (≲ 10cm), frequent, and strongly-stratified; very few large overturns were observed. The corresponding velocity profiles varied over larger length scales than the temperature profiles. These structures are consistent with scouring behaviour rather than Kelvin-Helmholtz-type overturning. Their net effect, estimated via a Thorpe-scale analysis, suggests that these frequent small temperaturemore »
-
Marine boundary layer (MBL) clouds are an important, though uncertain, part of Earth’s radiative budget. Previous studies have shown sources of aerosol particles in the remote MBL consist of primary sea spray, the oxidation of organic and inorganic vapors derived from the ocean, entrainment from the free troposphere, and anthropogenic pollution. The potential for these particles to become cloud condensation nuclei (CCN) varies largely dependent on their hygroscopic properties. Furthermore, when clouds form, physical processes can alter the optical properties of the cloud. This dissertation aims to identify variations in aerosol sources that affect MBL CCN concentrations and physical processes throughout the cloud lifetime that influence cloud optical properties. Ambient measurements of marine particles and clouds were made throughout two campaigns in the north Pacific and four campaigns in the north Atlantic. Both clean marine and polluted clouds were sampled. In addition, dry MBL particles were measured to identify their chemical composition and size distribution, which is necessary to identify their potential to be CCN active. The organic hygroscopicity influenced CCN concentrations and cloud optical properties significantly for particles that were mostly organic, such as ship stack and generated smoke particles. For a typical range of organic hygroscopicity the amountmore »