skip to main content


Title: Real-time mapping of nanopore raw signals
Abstract Motivation Oxford Nanopore Technologies sequencing devices support adaptive sequencing, in which undesired reads can be ejected from a pore in real time. This feature allows targeted sequencing aided by computational methods for mapping partial reads, rather than complex library preparation protocols. However, existing mapping methods either require a computationally expensive base-calling procedure before using aligners to map partial reads or work well only on small genomes. Results In this work, we present a new streaming method that can map nanopore raw signals for real-time selective sequencing. Rather than converting read signals to bases, we propose to convert reference genomes to signals and fully operate in the signal space. Our method features a new way to index reference genomes using k-d trees, a novel seed selection strategy and a seed chaining algorithm tailored toward the current signal characteristics. We implemented the method as a tool Sigmap. Then we evaluated it on both simulated and real data and compared it to the state-of-the-art nanopore raw signal mapper Uncalled. Our results show that Sigmap yields comparable performance on mapping yeast simulated raw signals, and better mapping accuracy on mapping yeast real raw signals with a 4.4× speedup. Moreover, our method performed well on mapping raw signals to genomes of size >100 Mbp and correctly mapped 11.49% more real raw signals of green algae, which leads to a significantly higher F1-score (0.9354 versus 0.8660). Availability and implementation Sigmap code is accessible at https://github.com/haowenz/sigmap. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1816027
NSF-PAR ID:
10317148
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Bioinformatics
Volume:
37
Issue:
Supplement_1
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Summary

    Improvements in nanopore sequencing necessitate efficient classification methods, including pre-filtering and adaptive sampling algorithms that enrich for reads of interest. Signal-based approaches circumvent the computational bottleneck of basecalling. But past methods for signal-based classification do not scale efficiently to large, repetitive references like pangenomes, limiting their utility to partial references or individual genomes. We introduce Sigmoni: a rapid, multiclass classification method based on the r-index that scales to references of hundreds of Gbps. Sigmoni quantizes nanopore signal into a discrete alphabet of picoamp ranges. It performs rapid, approximate matching using matching statistics, classifying reads based on distributions of picoamp matching statistics and co-linearity statistics, all in linear query time without the need for seed-chain-extend. Sigmoni is 10–100× faster than previous methods for adaptive sampling in host depletion experiments with improved accuracy, and can query reads against large microbial or human pangenomes. Sigmoni is the first signal-based tool to scale to a complete human genome and pangenome while remaining fast enough for adaptive sampling applications.

    Availability and implementation

    Sigmoni is implemented in Python, and is available open-source at https://github.com/vshiv18/sigmoni.

     
    more » « less
  2. Birol, Inanc (Ed.)
    Abstract Motivation Oxford Nanopore sequencing has great potential and advantages in population-scale studies. Due to the cost of sequencing, the depth of whole-genome sequencing for per individual sample must be small. However, the existing single nucleotide polymorphism (SNP) callers are aimed at high-coverage Nanopore sequencing reads. Detecting the SNP variants on low-coverage Nanopore sequencing data is still a challenging problem. Results We developed a novel deep learning-based SNP calling method, NanoSNP, to identify the SNP sites (excluding short indels) based on low-coverage Nanopore sequencing reads. In this method, we design a multi-step, multi-scale and haplotype-aware SNP detection pipeline. First, the pileup model in NanoSNP utilizes the naive pileup feature to predict a subset of SNP sites with a Bi-long short-term memory (LSTM) network. These SNP sites are phased and used to divide the low-coverage Nanopore reads into different haplotypes. Finally, the long-range haplotype feature and short-range pileup feature are extracted from each haplotype. The haplotype model combines two features and predicts the genotype for the candidate site using a Bi-LSTM network. To evaluate the performance of NanoSNP, we compared NanoSNP with Clair, Clair3, Pepper-DeepVariant and NanoCaller on the low-coverage (∼16×) Nanopore sequencing reads. We also performed cross-genome testing on six human genomes HG002–HG007, respectively. Comprehensive experiments demonstrate that NanoSNP outperforms Clair, Pepper-DeepVariant and NanoCaller in identifying SNPs on low-coverage Nanopore sequencing data, including the difficult-to-map regions and major histocompatibility complex regions in the human genome. NanoSNP is comparable to Clair3 when the coverage exceeds 16×. Availability and implementation https://github.com/huangnengCSU/NanoSNP.git. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract

    The high sequencing error rate has impeded the application of long noisy reads for diploid genome assembly. Most existing assemblers failed to generate high-quality phased assemblies using long noisy reads. Here, we present PECAT, aPhasedErrorCorrection andAssemblyTool, for reconstructing diploid genomes from long noisy reads. We design a haplotype-aware error correction method that can retain heterozygote alleles while correcting sequencing errors. We combine a corrected read SNP caller and a raw read SNP caller to further improve the identification of inconsistent overlaps in the string graph. We use a grouping method to assign reads to different haplotype groups. PECAT efficiently assembles diploid genomes using Nanopore R9, PacBio CLR or Nanopore R10 reads only. PECAT generates more contiguous haplotype-specific contigs compared to other assemblers. Especially, PECAT achieves nearly haplotype-resolved assembly onB. taurus(Bison×Simmental) using Nanopore R9 reads and phase block NG50 with 59.4/58.0 Mb for HG002 using Nanopore R10 reads.

     
    more » « less
  4. Yann, Ponty (Ed.)
    Abstract Motivation Third generation sequencing techniques, such as the Single Molecule Real Time technique from PacBio and the MinION technique from Oxford Nanopore, can generate long, error-prone sequencing reads which pose new challenges for fragment assembly algorithms. In this paper, we study the overlap detection problem for error-prone reads, which is the first and most critical step in the de novo fragment assembly. We observe that all the state-of-the-art methods cannot achieve an ideal accuracy for overlap detection (in terms of relatively low precision and recall) due to the high sequencing error rates, especially when the overlap lengths between reads are relatively short (e.g. <2000 bases). This limitation appears inherent to these algorithms due to their usage of q-gram-based seeds under the seed-extension framework. Results We propose smooth q-gram, a variant of q-gram that captures q-gram pairs within small edit distances and design a novel algorithm for detecting overlapping reads using smooth q-gram-based seeds. We implemented the algorithm and tested it on both PacBio and Nanopore sequencing datasets. Our benchmarking results demonstrated that our algorithm outperforms the existing q-gram-based overlap detection algorithms, especially for reads with relatively short overlapping lengths. Availability and implementation The source code of our implementation in C++ is available at https://github.com/FIGOGO/smoothq. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract Motivation

    Recent advances in genomics and precision medicine have been made possible through the application of high throughput sequencing (HTS) to large collections of human genomes. Although HTS technologies have proven their use in cataloging human genome variation, computational analysis of the data they generate is still far from being perfect. The main limitation of Illumina and other popular sequencing technologies is their short read length relative to the lengths of (common) genomic repeats. Newer (single molecule sequencing – SMS) technologies such as Pacific Biosciences and Oxford Nanopore are producing longer reads, making it theoretically possible to overcome the difficulties imposed by repeat regions. Unfortunately, because of their high sequencing error rate, reads generated by these technologies are very difficult to work with and cannot be used in many of the standard downstream analysis pipelines. Note that it is not only difficult to find the correct mapping locations of such reads in a reference genome, but also to establish their correct alignment so as to differentiate sequencing errors from real genomic variants. Furthermore, especially since newer SMS instruments provide higher throughput, mapping and alignment need to be performed much faster than before, maintaining high sensitivity.

    Results

    We introduce lordFAST, a novel long-read mapper that is specifically designed to align reads generated by PacBio and potentially other SMS technologies to a reference. lordFAST not only has higher sensitivity than the available alternatives, it is also among the fastest and has a very low memory footprint.

    Availability and implementation

    lordFAST is implemented in C++ and supports multi-threading. The source code of lordFAST is available at https://github.com/vpc-ccg/lordfast.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less