Self-supervised depth estimation has recently demonstrated promising performance compared to the supervised methods on challenging indoor scenes. However, the majority of efforts mainly focus on exploiting photometric and geometric consistency via forward image warping and backward image warping, based on monocular videos or stereo image pairs. The influence of defocus blur to depth estimation is neglected, resulting in a limited performance for objects and scenes in out of focus. In this work, we propose the first framework for simultaneous depth estimation from a single image and image focal stacks using depth-from-defocus and depth-from-focus algorithms. The proposed network is able to learn optimal depth mapping from the information contained in the blur of a single image, generate a simulated image focal stack and all-in-focus image, and train a depth estimator from an image focal stack. In addition to the validation of our method on both synthetic NYUv2 dataset and real DSLR dataset, we also collect our own dataset using a DSLR camera and further verify on it. Experiments demonstrate that our system surpasses the state-of-the-art supervised depth estimation method over 4% in accuracy and achieves superb performance among the methods without direct supervision on the synthesized NYUv2 dataset, which has been rarely explored.
more »
« less
Defocus Map Estimation and Deblurring From a Single Dual-Pixel Image
We present a method that takes as input a single dual-pixel image, and simultaneously estimates the image's defocus map---the amount of defocus blur at each pixel---and recovers an all-in-focus image. Our method is inspired from recent works that leverage the dual-pixel sensors available in many consumer cameras to assist with autofocus, and use them for recovery of defocus maps or all-in-focus images. These prior works have solved the two recovery problems independently of each other, and often require large labeled datasets for supervised training. By contrast, we show that it is beneficial to treat these two closely-connected problems simultaneously. To this end, we set up an optimization problem that, by carefully modeling the optics of dual-pixel images, jointly solves both problems. We use data captured with a consumer smartphone camera to demonstrate that, after a one-time calibration step, our approach improves upon prior works for both defocus map estimation and blur removal, despite being entirely unsupervised.
more »
« less
- Award ID(s):
- 1730147
- PAR ID:
- 10317160
- Date Published:
- Journal Name:
- Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
3D Gaussian Splatting (3DGS) techniques have recently enabled high-quality 3D scene reconstruction and real-time novel view synthesis. These approaches, however, are limited by the pinhole camera model and lack effective modeling of defocus effects. Departing from this, we introduce DOF-GS — a new 3DGS-based framework with a finite-aperture camera model and explicit, differentiable defocus rendering, enabling it to function as a post-capture control tool. By training with multi-view images with moderate defocus blur, DOF-GS learns inherent camera characteristics and reconstructs sharp details of the underlying scene, particularly, enabling rendering of varying DOF effects through on-demand aperture and focal distance control, post-capture and optimization. Additionally, our framework extracts circle-of-confusion cues during optimization to identify in-focus regions in input views, enhancing the reconstructed 3D scene details. Experimental results demonstrate that DOF-GS supports post-capture refocusing, adjustable defocus and high-quality all-in-focus rendering, from multi-view images with uncalibrated defocus blur.more » « less
-
The image processing task of the recovery of an image from a noisy or compromised image is an illposed inverse problem. To solve this problem, it is necessary to incorporate prior information about the smoothness, or the structure, of the solution, by incorporating regularization. Here, we consider linear blur operators with an efficiently-found singular value decomposition. Then, regularization is obtained by employing a truncated singular value expansion for image recovery. In this study, we focus on images for which the image blur operator is separable and can be represented by a Kronecker product such that the associated singular value decomposition is expressible in terms of the singular value decompositions of the separable components. The truncation index k can then be identified without forming the full Kronecker product of the two terms. This report investigates the problem of learning an optimal k using two methods. For one method to learn k we assume the knowledge of the true images, yielding a supervised learning algorithm based on the average relative error. The second method uses the method of generalized cross validation and does not require knowledge of the true images. The approach is implemented and demonstrated to be successful for Gaussian, Poisson and salt and pepper noise types across noise levels with signal to noise ratios as low as 10. This research contributes to the field by offering insights into the use of the supervised and unsupervised estimators for the truncation index, and demonstrates that the unsupervised algorithm is not only robust and computationally efficient, but is also comparable to the supervised method.more » « less
-
Passive, compact, single-shot 3D sensing is useful in many application areas such as microscopy, medical imaging, surgical navigation, and autonomous driving where form factor, time, and power constraints can exist. Obtaining RGB-D scene information over a short imaging distance, in an ultra-compact form factor, and in a passive, snapshot manner is challenging. Dual-pixel (DP) sensors are a potential solution to achieve the same. DP sensors collect light rays from two different halves of the lens in two interleaved pixel arrays, thus capturing two slightly different views of the scene, like a stereo camera system. However, imaging with a DP sensor implies that the defocus blur size is directly proportional to the disparity seen between the views. This creates a trade-off between disparity estimation vs. deblurring accuracy. To improve this trade-off effect, we propose CADS (Coded Aperture Dual-Pixel Sensing), in which we use a coded aperture in the imaging lens along with a DP sensor. In our approach, we jointly learn an optimal coded pattern and the reconstruction algorithm in an end-to-end optimization setting. Our resulting CADS imaging system demonstrates improvement of >1.5dB PSNR in all-in-focus (AIF) estimates and 5-6% in depth estimation quality over naive DP sensing for a wide range of aperture settings. Furthermore, we build the proposed CADS prototypes for DSLR photography settings and in an endoscope and a dermoscope form factor. Our novel coded dual-pixel sensing approach demonstrates accurate RGB-D reconstruction results in simulations and real-world experiments in a passive, snapshot, and compact manner.more » « less
-
Extracting depth information from photon-limited, defocused images is challenging because depth from defocus (DfD) relies on accurate estimation of defocus blur, which is fundamentally sensitive to image noise. We present a novel approach to robustly measure object depths from photon-limited images along the defocused boundaries. It is based on a new image patch representation, Blurry-Edges, that explicitly stores and visualizes a rich set of low-level patch information, including boundaries, color, and smoothness. We develop a deep neural network architecture that predicts the Blurry-Edges representation from a pair of differently defocused images, from which depth can be analytically calculated using a novel DfD relation we derive. Our experiment shows that our method achieves the highest depth estimation accuracy on photon-limited images compared to a broad range of state-of-the-art DfD methods.more » « less
An official website of the United States government

