Plasmon-phonon coupling between metamaterials and molecular vibrations provides a new path for studying mid-infrared light-matter interactions and molecular detection. So far, the coupling between the plasmonic resonances of metamaterials and the phonon vibrational modes of molecules has been realized under linearly polarized light. Here, mid-infrared chiral plasmonic metasurfaces with high circular dichroism (CD) in absorption over 0.65 in the frequency range of 50 to 60 THz are demonstrated to strongly interact with the phonon vibrational resonance of polymethyl methacrylate (PMMA) molecules at 52 THz, under both left-handed and right-handed circularly polarized (LCP and RCP) light. The mode splitting features in the absorption spectra of the coupled metasurface-PMMA systems under both circular polarizations are studied in PMMA layers with different thicknesses. The relation between the mode splitting gap and the PMMA thickness is also revealed. The demonstrated results can be applied in areas of chiral molecular sensing, thermal emission, and thermal energy harvesting.
more »
« less
Effect of thermal annealing on aggregation of a squaraine thin film
This study aimed to investigate the effects of thermal annealing on a film of squaraine (SQ) molecules in a polymethyl methacrylate (PMMA) matrix. Molecular aggregation is inferred from in situ absorption measurements, and excited state dynamics are measured using a spatially encoded transient absorption (TA) spectroscopy. TA spectra were well-replicated using a kinetic model that evolves as a function of annealing time and extent of aggregation. While linear absorbance spectra indicate that the SQ molecules are primarily uncoupled or weakly-coupled when initially deposited in a PMMA matrix, the kinetic model shows that some pi-stacked aggregates are already present. Excitons are funnelled by energy transfer to these aggregates in just a few picoseconds. The amount of pi-stacked aggregates increases during thermal annealing, further increasing the population of excitons that end up in these aggregates.
more »
« less
- Award ID(s):
- 1752129
- PAR ID:
- 10317166
- Date Published:
- Journal Name:
- MRS Advances
- ISSN:
- 2731-5894
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The use of flashlamp annealing as a low-temperature alternative or supplement to thermal annealing is investigated. Flashlamp annealing and thermal annealing were conducted on 100 nm thick indium tin oxide (ITO) films deposited on glass to compare the properties of films under different annealing methods. The ITO samples had an average initial sheet resistance of 50 Ω/sq. After flashlamp annealing, the sheet resistance was reduced to 33 Ω/sq only, while by thermal annealing at 210 °C for 30 min, a sheet resistance of 29 Ω/sq was achieved. Using a combination of flashlamp annealing and thermal annealing at 155 °C for 5 min, a sheet resistance of 29 Ω/sq was achieved. X-ray diffraction analysis confirmed that flashlamp annealing can be used to crystallize ITO. Flashlamp annealing allows for low-temperature crystallization of ITO on a time scale of 1–3 min. Through electrical and optical characterizations, it was determined that flashlamp annealing can achieve similar electrical and optical properties as thermal annealing. Flashlamp offers the method of low-temperature annealing, which is particularly suitable for temperature sensitive substrates.more » « less
-
We show that the polymer-grafted nanoparticles (NPs) initially welldispersed in a polymer matrix segregate to the free surface of a film upon thermal annealing in the one-phase region of the phase diagram because the grafted polymer has a lower surface energy than the matrix polymer. Using a combination of atomic force microscopy, transmission electron microscopy, and Rutherford backscattering spectrometry, the evolution of the poly(methyl methacrylate)-grafted silica NP (PMMA NP) surface excess in 25/75 wt % PMMA NP/poly(styrene-ranacrylonitrile) films is observed as a function of annealing time at 150 °C (T < TLCST). The temporal growth of the surface excess is interpreted as a competition between entropic contributions, surface energy differences of the constituents, and the Flory−Huggins interaction parameter, χ. For the first time in a miscible polymer nanocomposite mixture, quantitative comparisons of NP surface segregation are made with the predictions of theory derived for analogous polymer blends. These studies provide insight for designing polymer nanocomposite films with advantageous surface properties such as wettability and hardness and motivate the need for developing rigorous models that capture complex polymer nanocomposite phase behaviors.more » « less
-
Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. DNA is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations—transverse dimer, adjacent dimer, and tetramer—were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes were obtained by simultaneous fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of dye mutual orientation in the aggregates enabled close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next generation systems driven by molecular excitons.more » « less
An official website of the United States government

